

SolidWorks 2009

API

Advanced Product Development

Written by Luke Malpass
AngelSix.com

Published by AngelSix

 ©2008-2013 Luke Malpass
 contact@angelsix.com

 All rights reserved. No part of this publication may be

reproduced or distributed in any form or by any means,
electronic or mechanical, including photocopy, recording, or any
information storage or retrieval system, without prior written
permission of the publisher. Provided source code may be
exempt from this right if existing copyright notice is left in the
code file on redistribution.

 Published by AngelSix – AngelSix.com

First Edition

Trademark Information

 SolidWorks and PDMWorks are registered
trademarks of SolidWorks Corporation.

 Excel, Word, Visual Studio are registered

trademarks of Microsoft Corporation.

Photoshop is a registered trademark of
Adobe.

WinRAR is a registered trademark of RARLAB
products.

 Other brand or product names are

trademarks or registered trademarks of their
respective holders.

Contributors
Following on from my last book “SolidWorks 20008 API:
Programming & Automation”, the feedback and enthusiasm for the
follow-up book has been great.

As well as the success of the first book and the feedback being
driving factors for this book I also enjoy sharing my knowledge and
experience to a wide audience. And so, I hope you enjoy this book as
much as the first!

For those of you who have been waiting for this book for months
sorry for the delay but I wanted to make sure I could dedicate myself
to this next book to make sure the standards you expect are kept up!

Introduction
Firstly this book is written with the presumption that the reader has
adequate knowledge of SolidWorks API programming (either from
experience or from reading my previous book) and so complete
beginners may struggle as basic steps are overlooked.

This book focuses a lot more on hardcore API programming
techniques and methods focused around the add-in area of
SolidWorks.

Purely .Net (no VBA this time folks).

As well as covering the API, we go ten steps further and move on to
something I have personally never found in any programming book
on the market, presumably because those who have the knowledge
do not wish to share it; actual real-world product development step-
by-step from concept to design, on to licensing, installation, sales,
distribution and marketing! After all, is that not where this journey is
meant to lead?

The topics covered will include SolidWorks Add-ins, in-process
coding vs. Standalone, planning and production, the development of
a fully-functioning complex event and notification hooked
application, creating your very own installer that installs your add-in,
registers with COM, and creates desktop/start menu shortcuts and
much more. You will even be taught on using Photoshop CS4 to
create a logo and packaging for your product!

This book is truly a full product lifecycle journey and beginners right
through to industry pro’s will learn a thing or two from at least one
chapter.

As always, all feedback is greatly appreciated, please send
comments to contact@angelsix.com.

This book presumes the reader has intermediate knowledge and
understanding of computer programming and experience in any .Net
programming language would be beneficial, and is savvy with
SolidWorks and informed of its API.

I have tried to give the best explanation of all code provided on its
purpose, and what the point of every line of code is. I hope you enjoy
reading this book as much as I have enjoyed writing it.

Download source-code for this book:

HTTP://WWW.ANGELSIX.COM/CODE/SW2009.ZIP

http://www.angelsix.com/CODE/SW2009.ZIP

Table of Contents

8

Contents
Setting Up .. 11

Download and Install Visual Studio Express 13

The Project Setup ... 14

SolidWorks Add-ins ... 19

The Basic Add-in ... 20

Testing the Add-in .. 38

Manually Registering for COM .. 41

Menu’s & Property Pages ... 43

Creating Menus ... 44

Property Manager Pages ... 53

Property Page Controls ... 67

Call-backs .. 73

Add-ins Vs Stand-alones .. 74

Key Differences .. 75

Pros and Cons ... 76

Making the right choice .. 78

Hybrids ... 79

Planning and Product Design .. 80

Why plan? ... 81

Pre-development Stage .. 82

Initial Development Stage .. 89

Table of Contents

9

Adding Functionality ... 90

Debugging and Testing ... 91

Methods of Debugging .. 92

Development ... 106

The Blueprint .. 107

The Add-in Class ... 109

The PMP Layout ... 117

Toggling Pages / Reacting to Events 140

Setting up Hooks ... 144

Part Events .. 146

Assembly Events ... 148

Drawing Events ... 155

Tidy Up .. 169

Enhancements ... 171

Methods of Deployment ... 174

Manual Installation .. 176

SFX Archives .. 177

Installation Packages ... 182

Creating An Installer .. 195

Licensing Your Product ... 231

Overview ... 232

Self-implementation ... 233

Corporate Licensing .. 234

Table of Contents

10

Distribution and Sales ... 235

Preparing your Product for Market 236

Online Distribution and Sales .. 242

In-Store Distribution and Sales ... 245

Marketing ... 246

11

Setting Up

Download and Install Visual Studio Express

The Project Setup

Setting Up

12

For those following on from the last book you will be glad to know
we will be picking up right were left off getting straight into
SolidWorks Add-ins. For those of you starting with this book a
SolidWorks Add-in differs from a SolidWorks macro in the sense that
a macro is commonly seen as a small program with a simple
structure performing basic tasks writing in a high-level language,
whereas the Add-ins we will be creating are written in a lower-level
language (lower being closer to actual computer machine code
therefore more powerful), will be more complex, and perform
multifaceted tasks. As well as this they will be registered in
SolidWorks in a special manner to make them loadable/unloadable
at any time through the add-ins menu of SolidWorks, or
automatically on start-up of a SolidWorks session, and will have the
added power of integrating into the menu systems of SolidWorks as
well as access to a few other “add-in only features”.

Before we start any project there are a few steps to getting set up
first.

Setting Up

13

Download and Install Visual Studio
Express
Before you can begin you must download and install the Visual
Studio software for your desired language.

Go to http://www.microsoft.com/express/download/default.aspx and
simply download and install either C# Express and/or VB.Net
Express. All guides to installing them are on the site.

When you have installed the program, run it. You may be prompted
to select layout style or preferred language, just select any.

Now you are ready to begin programming.

http://www.microsoft.com/express/download/default.aspx

Setting Up

14

The Project Setup
As many of the projects you will develop throughout the course of
this book take the same steps, to save repeating any unnecessary
material the common initial setup is covered here the once, and all
future projects are presumed to follow the same steps unless
otherwise stated.

For each new project the first thing you need to do is to start by
opening Visual Studio and creating a new Class Library Project (this
step will differ to a Windows Forms Applications Project for Stand-
Alone applications later).

 Give the project any name you desire that will relate easily to the
projects purpose, and click OK:

This will create you a new class library project, with a simple file
called Class1.cs/Class1.vb by default.

Setting Up

15

With a blank slate project the next step is to add the desired
references to the SolidWorks COM objects so that we can use the
SolidWorks API.

Adding the SolidWorks References
Before we can do anything, we must add references to SolidWorks in
order to use any of its API functions and variables. In the Solution
Explorer, right-click the References item and click Add Reference...
Once the dialog appears, click the COM tab, and then from the list
select the following items (holding Ctrl to select multiple in one go),
and click OK.

SldWorks 2009 Type Library
SolidWorks 2009 Commands type Library
SolidWorks 2009 Constant type Library
SolidWorks 2009 exposed type libraries for add-in use

If you do not see the References folder (usually in VB.Net) click the
Show All Files button first:

Setting Up

16

As well as the standard reference to SolidWorks, there is one more
that is beneficial and should be added for any project you develop as
a SolidWorks Add-in, and that is the SolidWorks Tools class; again
right-click the References item and click Add Reference... but this
time instead of selecting the COM tab, select the Browse tab to
browse for a file, and navigate to the install location of SolidWorks
and select the file “solidworkstools.dll” then click OK.

Setting Up

17

Finally, all that is left now is to add the using/Imports statements to
the top of each code file that uses the SolidWorks API. In C# place
the following statements in the using section of each code file
(typically Form1.cs in a Windows Forms Project and Class1.cs in a
Class Library Project):

Setting Up

18

C#

using SldWorks;
using SWPublished;
using SwConst;
using SwCommands;

// Omit if not using solidworkstools.dll reference
using SolidWorksTools;
using SolidWorksTools.File;

And in VB.Net place the following:

VB

Imports SldWorks
Imports SWPublished
Imports SwConst
Imports SwCommands

' Omit if not using solidworkstools.dll reference
Imports SolidWorksTools
Imports SolidWorksTools.File

19

SolidWorks Add-ins

The Basic Add-in

Testing the Add-in

Manually Registering for COM

SolidWorks Add-ins

20

The Basic Add-in
We will start basic and get an add-in created and loaded into
SolidWorks before we take any further steps. The add-in will not
have any functions or methods other than registering itself with
COM and implementing connecting/disconnecting to SolidWorks.
This will demonstrate a working functioning add-in as good grounds
for future programs.

Start by creating a new Class Library project and give it any name
you desire. Once created, setup the references to SolidWorks
(including the solidworkstools.dll reference) and add the
using/Imports statements to the Class1 file that had been created by
Visual Studio.

Next, we want to rename our class to something more meaningful
than Class1; right-click the Class1 file from the Solution Explorer and
select Rename. Enter “swAddin” without quotations as the new
name, leaving the extension (.cs/.vb) as is. You may get a further
warning that the references will also be renamed. Just select yes for
this so that the actual class name in the coding file will also be
renamed:

SolidWorks Add-ins

21

Your swAddin class file will now look like this:

C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using SldWorks;
using SWPublished;
using SwConst;
using SwCommands;

SolidWorks Add-ins

22

// Omit if not using solidworkstools.dll reference
using SolidWorksTools;
using SolidWorksTools.File;

namespace MyFirstSWAddinCS
{
 public class SwAddin
 {
 }
}

VB

Imports SldWorks
Imports SWPublished
Imports SwConst
Imports SwCommands

' Omit if not using solidworkstools.dll reference
Imports SolidWorksTools
Imports SolidWorksTools.File

Public Class swAddin

End Class

SolidWorks Add-ins

23

The next job is to make our class implement a SolidWorks Add-in
interface by telling it to derive from a SolidWorks Add-in interface.
To do this we do the following:

C#

public class SwAddin : ISwAddin

VB

Public Class swAddin
 Implements SWPublished.SwAddin

In VB make sure the “Implements” line is on a separate line not the
same as the class.

As we are instructing our class to derive from another class we must
follow all of the rules that the base class demands. In the case of the
SolidWorks Add-in class there are only two requirements; to
implement 2 functions - one for when SolidWorks loads the add-in
into its memory, and one when it unloads it.

Implementing the Interface
In C# you can use an IntelliSense tool to automatically generate all
the required functions of the base class. To do this right-click the
ISwAddin text of the class and select Implement Interface-
>Implement Interface:

SolidWorks Add-ins

24

C#

public class SwAddin : ISwAddin
{
 #region ISwAddin Members
 public bool ConnectToSW(object ThisSW, int Cookie)
 {
 throw new NotImplementedException();
 }

 public bool DisconnectFromSW()
 {
 throw new NotImplementedException();
 }

 #endregion
}

SolidWorks Add-ins

25

For VB.Net the trick is a little different. Notice the Implements line
has a blue line under it (indicating a problem).

To implement the required functions place the cursor after the
Implements SWPublished.SwAddin text (on the same line) and
then press Enter to generate the functions automatically.

VB

Public Class swAddin
 Implements SWPublished.SwAddin

 Public Function ConnectToSW(ByVal ThisSW As Object, ByVal
Cookie As Integer) As Boolean Implements
SWPublished.ISwAddin.ConnectToSW

 End Function

 Public Function DisconnectFromSW() As Boolean Implements
SWPublished.ISwAddin.DisconnectFromSW

 End Function
End Class

SolidWorks Add-ins

26

For our first add-in we are not bothering with any menu systems or
functionality we just want a way to know that our add-in is working
and loading/unloading correctly, so all we will do is show a message
to the user when connecting and disconnecting the add-in.

In the ConnectToSW function we get passed a variable called
ThisSW; this is a pointer to the active SolidWorks instance that our
add-in has been loaded to and is exactly the same as the
SldWorks.SldWorks variable we use in normal macros and
programs, except we use the Interface variable version (beginning
with I).

With access to the SolidWorks application object we can call any
function we like, so to suite our needs we will show a message to the
user using the SendMsgToUser2 function. Firstly, create a variable
in the class of ISldWorks, and then within the ConnectToSW
function we initialise this variable and call the SendMsgToUser2
function. We place the same code in the DisconnectFromSW
function and release the variable and free up any resources.

C#

public class SwAddin : ISwAddin
{
 ISldWorks iSwApp;

 #region ISwAddin Members

 public bool ConnectToSW(object ThisSW, int Cookie)
 {
 iSwApp = (ISldWorks)ThisSW;

SolidWorks Add-ins

27

 iSwApp.SendMsgToUser2("Hello!",
(int)swMessageBoxIcon_e.swMbInformation,
(int)swMessageBoxBtn_e.swMbOk);
 return true;
 }

 public bool DisconnectFromSW()
 {
 iSwApp.SendMsgToUser2("Bye!",
(int)swMessageBoxIcon_e.swMbInformation,
(int)swMessageBoxBtn_e.swMbOk);
 iSwApp = null;
 GC.Collect();
 return true;
 }

 #endregion
}

To initialise the iSwAddin we explicitly cast the object variable
ThisSW to the required ISldWorks variable type as shown.

We then call the SolidWorks function SendMsgToUser2. This
requires 3 parameters; the first is the message to display as a string.
The second is the message box icon to show, which is an enumerator
of type swMessageBoxIcon_e that we get from the SwConst class,
which we then explicitly cast to an int variable as required. The third
is the buttons to show in the message box such as Yes|No, or
OK|Cancel etc... We use the enumerator swMessageBoxBtn_e and
cast it back to an int like the previous parameter. Simple enough!

SolidWorks Add-ins

28

For the connect message we type “Hello!” Feel free to type any
message you like.

Now onto the DisconnectFromSW function; we have already
initialised the iSwApp variable in the connect function so we do not
need to do that step again. Copy and paste the SendMsgToUser2
code from the ConnectToSW function and paste it into the
DisconnectFromSW function, changing the message to “Bye!”

As our add-in is now disconnecting from SolidWorks we need to free
up all the memory it has allocated and clear out our variables so that
the system is free to use them again. This is done by setting the
iSwApp to null, and calling the Garbage Collector function Collect,
which tells .Net to come and clean up any unused resources from our
program immediately. As the functions also require us to return a
Boolean value for successful connection/disconnection or not, we
also return true to tell SolidWorks everything went OK.

In VB everything is the same except we use the usual class variable
SldWorks.SldWorks not the interface variable
SldWorks.ISldWorks. Also VB does explicit casting automatically so
there is no need to cast the ThisSW object variable we just assign it:

VB

Public Class swAddin
 Implements SWPublished.SwAddin

 Dim iSwApp As SldWorks.SldWorks

SolidWorks Add-ins

29

 Public Function ConnectToSW(ByVal ThisSW As Object, ByVal
Cookie As Integer) As Boolean Implements
SWPublished.ISwAddin.ConnectToSW
 iSwApp = ThisSW
 iSwApp.SendMsgToUser2("Hello!",
swMessageBoxIcon_e.swMbInformation,
swMessageBoxBtn_e.swMbOk)
 ConnectToSW = True
 End Function

 Public Function DisconnectFromSW() As Boolean Implements
SWPublished.ISwAddin.DisconnectFromSW
 iSwApp.SendMsgToUser2("Bye!",
swMessageBoxIcon_e.swMbInformation,
swMessageBoxBtn_e.swMbOk)
 iSwApp = Nothing
 GC.Collect()
 DisconnectFromSW = True
 End Function
End Class

Attribute Tags
Whenever you are working with interoperability or COM
programming you almost always require Attribute Tags; these help
other programs understand information about your classes, such is
the case for a SolidWorks Add-in.

Start by adding a new item to the using/Imports section so that we
can use the most common attribute tags:

SolidWorks Add-ins

30

C#

using System.Runtime.InteropServices;

VB

Imports System.Runtime.InteropServices

Attribute tags are placed on the line directly above the class/property
they are defining. On the line above our SwAddin class we need to
define several attributes; a Globally Unique Identifier (GUID), the
COM visibility, and SolidWorks-specific information such as title,
description and whether to load the add-in automatically on start-up
of SolidWorks.

The GUID is needed for any COM object in order to identify itself
from all other objects on the system that are registered, and for that
reason we need a unique code; to get a GUID code use the tool called
GUIDCreator.exe in the example files provided under Chapter 1. This
tool is from the previous book.

Generate a GUID and copy/paste that code into the line directly
above the swAddin class within an attribute function Guid() in
quotations. As well as a GUID it is also mandatory to make our class
COM visible so that SolidWorks can actually see it; we do this by
setting the ComVisible attribute to true like so:

SolidWorks Add-ins

31

C#

[Guid("e3397eb9-2dc3-4c21-a9cf-26aa10dc9763"), ComVisible(true)]
public class SwAddin : ISwAddin

VB

<Guid("e3397eb9-2dc3-4c21-a9cf-26aa10dc9763"),ComVisible(True)> _
 Public Class SwAddin
 Implements SolidWorks.Interop.swpublished.SwAddin

Note in VB that instead of commas to separate attributes it a space.
The “ _” (space and underscore) tells VB that the code on the line
below is part of the same line of code and is needed as all attributes
need to be on the same single line above the class.

That is all that is required to make a general COM class, but in order
to be a SolidWorks COM class we should also add the SolidWorks
specific COM attribute SwAddin to the class as well. Although this
isn’t strictly required it does make the class more programmatically
correct.

The SwAddin attribute has 3 properties to define the title and
description of the add-in shown in the Add-ins dialog, and whether
to set the “Load at Startup” checkbox to load the add-in every time
SolidWorks starts, or on user demand:

C#

[Guid("e3397eb9-2dc3-4c21-a9cf-26aa10dc9763"), ComVisible(true)]
[SwAddin(Description = "My addin description", Title = "My First Addin",
LoadAtStartup = true)]

SolidWorks Add-ins

32

public class SwAddin : ISwAddin

VB

<Guid("e3397eb9-2dc3-4c21-a9cf-26aa10dc9763"),ComVisible(True)> _
<SwAddin(Description:=" My addin description ", Title:=" My First Addin
", LoadAtStartup:=True)> _
Public Class SwAddin
 Implements SolidWorks.Interop.swpublished.SwAddin

Automatically Registering the Add-in
Although we now have a fully legitimate working add-in, if we build
the project we get a valid SolidWorks add-in dll file, but do not
actually tell SolidWorks about it or add it to the add-ins list of
SolidWorks (register it).

When SolidWorks is looking for its add-ins all it does is look in the
following 2 registry entry:

HKEY_LOCAL_MACHINE\SOFTWARE\SolidWorks\AddIns

HKEY_LOCAL_MACHINE\SOFTWARE\SolidWorks\SolidWorks
2009\AddIns

Where ‘X’ is your SolidWorks version in ‘200X’.

In order to tell SolidWorks where our add-in file is we need to add a
folder within this registry folder with the name as the GUID of our
class. Once SolidWorks gets this GUID it searches the COM objects
for our dll file.

SolidWorks Add-ins

33

As our class is to be a COM object we also need to register it with
COM interoperability on the system so when SolidWorks comes to
look for a COM object with our GUID, the operating system can
actually return our dll file to it from the COM library. For now we will
have this done automatically by Visual Studio.

To accomplish this within our class we need to add 2 functions; one
to be run when our add-in is registered to COM, and one when it is
unregistered. These are defined by adding the correct attribute tags
above their declaration like so:

C#

[ComRegisterFunctionAttribute]
public static void RegisterFunction(Type t)
{
}

[ComUnregisterFunctionAttribute]
public static void UnregisterFunction(Type t)
{
}

VB

<ComRegisterFunction()> Public Shared Sub RegisterFunction(ByVal t
As Type)
End Sub

<ComUnregisterFunction()> Public Shared Sub
UnregisterFunction(ByVal t As Type)

SolidWorks Add-ins

34

End Sub

The job we need to perform in these two functions is to create/delete
the required entries of the registry so that SolidWorks can find our
file.

These functions are called when the dll is registered on the system
for COM. This is the perfect place to add the required registry entries
to the system. To do this we can use the .Net library Microsoft.Win32
to easily manipulate the registry. To register we open up the registry
and add the folders in the correct locations and the attributes to
match our SwAddin attributes for title and description, then close
the registry. To unregister we simply delete the folders.

C#

[ComRegisterFunctionAttribute]
public static void RegisterFunction(Type t)
{
 Microsoft.Win32.RegistryKey hklm =
Microsoft.Win32.Registry.LocalMachine;
 Microsoft.Win32.RegistryKey hkcu =
Microsoft.Win32.Registry.CurrentUser;

 string keyname = "SOFTWARE\\SolidWorks\\Addins\\{" +
t.GUID.ToString() + "}";
 Microsoft.Win32.RegistryKey addinkey =
hklm.CreateSubKey(keyname);
 addinkey.SetValue(null, 0);
 addinkey.SetValue("Description", "Sample Addin");

SolidWorks Add-ins

35

 addinkey.SetValue("Title", "MyFirstAddin");

 keyname = "Software\\SolidWorks\\AddInsStartup\\{" +
t.GUID.ToString() + "}";
 addinkey = hkcu.CreateSubKey(keyname);
 addinkey.SetValue(null, 1);
}

[ComUnregisterFunctionAttribute]
public static void UnregisterFunction(Type t)
{
 //Insert code here.
 Microsoft.Win32.RegistryKey hklm =
Microsoft.Win32.Registry.LocalMachine;
 Microsoft.Win32.RegistryKey hkcu =
Microsoft.Win32.Registry.CurrentUser;

 string keyname = "SOFTWARE\\SolidWorks\\Addins\\{" +
t.GUID.ToString() + "}";
 hklm.DeleteSubKey(keyname);

 keyname = "Software\\SolidWorks\\AddInsStartup\\{" +
t.GUID.ToString() + "}";
 hkcu.DeleteSubKey(keyname);
}

SolidWorks Add-ins

36

VB

<ComRegisterFunction()> Public Shared Sub RegisterFunction(ByVal t
As Type)

 Dim hklm As Microsoft.Win32.RegistryKey =
Microsoft.Win32.Registry.LocalMachine
 Dim hkcu As Microsoft.Win32.RegistryKey =
Microsoft.Win32.Registry.CurrentUser

 Dim keyname As String = "SOFTWARE\SolidWorks\Addins\{" +
t.GUID.ToString() + "}"
 Dim addinkey As Microsoft.Win32.RegistryKey =
hklm.CreateSubKey(keyname)
 addinkey.SetValue(Nothing, 0)
 addinkey.SetValue("Description", "Sample Addin")
 addinkey.SetValue("Title", "MyFirstAddin")

 keyname = "Software\SolidWorks\AddInsStartup\{" +
t.GUID.ToString() + "}"
 addinkey = hkcu.CreateSubKey(keyname)
 addinkey.SetValue(Nothing, 1)
End Sub

<ComUnregisterFunction()> Public Shared Sub
UnregisterFunction(ByVal t As Type)
 Dim hklm As Microsoft.Win32.RegistryKey =
Microsoft.Win32.Registry.LocalMachine
 Dim hkcu As Microsoft.Win32.RegistryKey =
Microsoft.Win32.Registry.CurrentUser

SolidWorks Add-ins

37

 Dim keyname As String = "SOFTWARE\SolidWorks\Addins\{" +
t.GUID.ToString() + "}"
 hklm.DeleteSubKey(keyname)

 keyname = "Software\SolidWorks\AddInsStartup\{" +
t.GUID.ToString() + "}"
 hkcu.DeleteSubKey(keyname)
End Sub

Firstly we create a new RegistryKey object from the
Microsoft.Win32 library called “hklm” and set it to the Local
Machine static instance, and another called “hkcu” and set it to the
Current User static instance.

For the registering function we add the folders (using the
CreateSubKey function) with the name of our GUID, and the registry
items (using SetValue function) for Title and Description, and then
close the registry objects.

The single SetValue we add to the Current User registry is the Load
At Start-up entry. Setting the second parameter to 1 means load at
start-up, and 0 means not to. In this case we set it to 1.

SolidWorks Add-ins

38

Testing the Add-in
The one last thing we must do to make Visual Studio automatically
register our class to COM (we will do this manually after) is to right-
click the Project item in the Solution Explorer tab to the right and
select Properties. Under the Application tab click the Assembly
Information button and check the “Make Assembly COM Visible”
and click OK:

Then under the Build tab check the box “Register for COM interop”.

SolidWorks Add-ins

39

This “Register for COM Interop” is only available in the C# Express
version not the VB.Net version. This is the checkbox that makes the
registration with COM automatic when you build the project. So for
C# users all that is left is to build the project. For VB.Net read the
Manually Registering for COM section on the next page.

 Build your project to make it register with COM and create the dll.
You will get a warning once complete that the project cannot be
execute, just click OK to that.

That’s it; our Register function should have run and added our
registry entries. Take a look in the registry (Start->Run... regedit)
under the folders to see our add-in:

SolidWorks Add-ins

40

All that is left now is to test that our Connect and Disconnect
functions are running. As we set our add-in to run on start-up you will
get the “Hello!” and “Bye!” messages on opening SolidWorks and
closing SolidWorks.

SolidWorks Add-ins

41

Manually Registering for COM
If you are using Visual Basic Express then you must manually register
your project dll file to COM using the regasm.exe tool.

Open a new command window using Start->Run... and type cmd
then press enter. Now you must navigate to the framework folder
containing the regasm.exe file used to register .Net assemblies. Type
the following:

cd C:\Windows\Microsoft.NET\Framework\v2.0.50727

and press enter. If your Windows installation is in a different location
replace C:\Windows with the location. Type regasm and press enter
to check that the regasm.exe tool is found in this folder.

Now to register your assembly you need to type the following:

Regasm D:\MyFirstSWAddinVB.dll
Regasm D:\MyFirstSWAddinVB.dll /tlb

SolidWorks Add-ins

42

Where D:\MyFirstSWAddinVB.dll is the location of the compiled dll
file; the second line with /tlb is not strictly required but is there if you
wish to support legacy applications accessing and using your dll file.

 To make it easier, copy the files in your projects bin\Release folder
to a new location such as another drive or closer to the root of the C:\
drive so that you have less to type when registering the files.

43

Menu’s & Property Pages

Creating Menus

Property Manager Pages

Page Controls

Call-backs

Menus and Property Pages

44

Creating Menus
The next logical step to most add-ins is to add menus and toolbars
for the user to interact with to call functions of your add-in. Before
you add any functionality to an add-in you should always setup call-
backs; call-backs are functions within your program that get called
from another process (in this case SolidWorks) under certain events.
For example, say SolidWorks opened a document and you wanted to
be aware of this. You would have a call-back function that
SolidWorks calls for you when it opens a document. Call-backs are
used for many events as you will see soon.

Setup Call-back Info
All that is needed to setup general call-backs within your add-in is
one line of code. Add this line to the ConnectToSW function before
the function returns true:

C#

iSwApp.SetAddinCallbackInfo(0, this, Cookie);

VB

iSwApp.SetAddinCallbackInfo(0, Me, Cookie)

Now SolidWorks knows where to find your add-in to raise the
associated call-back functions.

Menus and Property Pages

45

The Command Manager
SolidWorks has functions for creating menus called AddMenuItem3.
Although this is a perfectly legitimate way to create a menu item, it
is used more for dynamic menus. If we were to create a menu item
using this command the item would not have an associated toolbar
item, and we would have to then call another function called
AddToolbar4, and then AddToolbarCommand2 for every menu
item.

A much better way to achieve both of these steps is by using what is
called a CommandManager object; this object, as its name suggests,
stores command items and from there creates menus and/or
toolbars using a single property of true/false.

To begin lets add a new command item for our add-in that will later
open a Property Manager Page (PMP), but for now just displays a
message to acknowledge it is working.

Inside our add-in class add a new variable definition:

C#

ICommandManager iCmdMgr;

VB

Dim iCmdMgr As SldWorks.CommandManager

Within the ConnectToSW function after we setup the call-back add
the following lines to initialise the CommandManager object:

Menus and Property Pages

46

C#

iCmdMgr = iSwApp.GetCommandManager(Cookie);
AddCommandMgr();

VB

iCmdMgr = iSwApp.GetCommandManager(Cookie)
AddCommandMgr()

The first line initialises the CommandManager object and the
second line is calling a function that we will create next, called
AddCommandMgr.

Below the functions currently in the class declare a new function
called AddCommandMgr; this is where we will add all of the code to
setup our add-in menu and toolbar items.

C#

public void AddCommandMgr()
{
}

VB

Public Sub AddCommandMgr()
End Sub

Menus and Property Pages

47

Note that the VB function is classified as a Sub; the only major
difference between a Sub and a Function in VB is that Subs do not
return any values so it is correct to use a Sub in this instance.

Before any command items can be added, they need to be contained
within a command group. Each group acts as having its own main
menu and/or toolbar, so one command manager is all you need in
your add-in regardless of how many menus you would like.

Once the group is created all that is left is to create the items and
activate the command group to effectively show the menu/toolbar.

C#

public void AddCommandMgr()
{
 ICommandGroup cmdGroup;

 cmdGroup = iCmdMgr.CreateCommandGroup(1, "MyAddin Menu 1",
"Click my items!", "My status description", 3);

 cmdGroup.AddCommandItem2("Create PMP", 0, "Creates a Property
Page", "Click me!", 0, "_cbCreatePMP", "", 0,
(int)(swCommandItemType_e.swMenuItem |
swCommandItemType_e.swToolbarItem));

 cmdGroup.HasToolbar = true;
 cmdGroup.HasMenu = true;
 cmdGroup.Activate();
}

Menus and Property Pages

48

VB

Public Sub AddCommandMgr()
 Dim cmdGroup As CommandGroup

 cmdGroup = iCmdMgr.CreateCommandGroup(1, "MyAddin Menu 1",
"Click my items!", "My status description", 3)

 cmdGroup.AddCommandItem2("Create PMP", 0, "Creates a Property
Page", "Click me!", 0, "_cbCreatePMP", "", 0,
swCommandItemType_e.swMenuItem Or
swCommandItemType_e.swToolbarItem)

 cmdGroup.HasMenu = True
 cmdGroup.HasToolbar = True
 cmdGroup.Activate()
End Sub

Let’s go through what has happened here; firstly a new instance of a
CommandGroup object is created using the command manager
object’s function CreateCommandGroup. This asks for the following
parameters:

virtual CommandGroup CreateCommandGroup(
 int UserID,
 string Title,
 string ToolTip,
 string Hint,
 int Position
)

Menus and Property Pages

49

The UserID is just an integer value that is unique for the
command manager of our add-in. Enter any number you like
here so long as you only enter that number once for this
command, if you add another group later give that another
number.

The second parameter Title is the name that will appear for the
main menu item, and for the Toolbar Title.

The third ToolTip is the text that will appear in the yellow box by
the mouse when you hover the mouse over the menu/toolbar.

The forth Hint is the text that will appear in the SolidWorks
status bar (bottom left of SolidWorks window).

And finally the Position is the menu position in the main
SolidWorks menu that your group will appear, 0 being first, 1
being second, 2 being third etc...

After we have created our group we now add an item using the
AddCommandItem2 function. This asks for the following
parameters:

virtual int AddCommandItem2(
 string Name,
 int Position,
 string HintString,
 string ToolTip,
 int ImageListIndex,
 string CallbackFunction,
 string EnableMethod,
 int UserID,
 int MenuTBOption
)

Menus and Property Pages

50

The Name is the menu/toolbar name that will appear for item.

The Position, HintString and ToolTip string are again like the
CreateCommandGroup properties.

The ImageListIndex is the zero-based position in the list of
images to use for this item (Ignore this for now).

The CallbackFunction is the name of a function within our add-in
that will be called when this item is clicked.

The EnableMethod is again the name of a function without our
add-in, but this function is called before the item is displayed and
returns a value from 0 to 4 determining whether or not to
show/enable this item. We do not use this for our example.

The UserID is a unique number to identify this item. This unlike
the group does not need to be specified and can be passed as 0 if
you wish to ignore it.

The MenuTBOption is where you specify whether or not to
display this item in menus and/or toolbars. It is a bitmask
(combination) of the swCommandItemType_e enumerator
options, combined with an Or statement.

The last 3 lines are self-explanatory; we tell the group that the global
setting for all items is to allow them to be shown in both menu and
toolbars and then to activate (show) the group. If we changed the
HasToolbar to false then even though we specified that our
command item is displayed in both menus and toolbars, it would be
overruled by the groups’ property.

Menus and Property Pages

51

The Item Call-back Function
In our code we have passed in the string “_cbCreatePMP” as the
name of our call-back function. This will be called when the user
clicks our menu item or toolbar button. In order for our add-in to
work we need to actually create a function called exactly that within
the class.

C#

public void _cbCreatePMP()
{
 iSwApp.SendMsgToUser2("I will create a PropertyManagerPage item
later", (int)swMessageBoxIcon_e.swMbInformation,
(int)swMessageBoxBtn_e.swMbOk);
}

VB

Public Sub _cbCreatePMP()
iSwApp.SendMsgToUser2("I will create a PropertyManagerPage item
later", swMessageBoxIcon_e.swMbInformation,
swMessageBoxBtn_e.swMbOk)
End Sub

Within this command item function is where we will create a
Property Manager Page next. For now we just display a message to
show it works.

One last thing before the add-in is ready to compile; when the add-in
is unloaded we need to remove all command groups else they will
remain in the SolidWorks menus and toolbars and when the user

Menus and Property Pages

52

clicks them errors will occur. Add a function called
RemoveCommandMgr to your class, and call it in the first line of the
DisconnectFromSW function.

C#

public void RemoveCommandMgr()
{
 iCmdMgr.RemoveCommandGroup(1);
}

VB

Public Sub RemoveCommandMgr()
 iCmdMgr.RemoveCommandGroup(1)
End Sub

The ‘1’ is the ID that we passed into the CreateCommandGroup to
identify the group. If you entered another ID for that parameter use
that in the RemoveCommandGroup function instead.

Compile your add-in and give it a go. Open up SolidWorks to see
your newly created menu item. Click it to display the message.

If you customise the toolbars you will see your group in there also.

Menus and Property Pages

53

Property Manager Pages
The main method that add-ins tend to use to
interface with SolidWorks and the user is called a
Property Manager Page; these are windows that
open directly inside SolidWorks in the same
location as the feature tree tab. An example of a
PMP is the Insert Component dialog.

In this section we will be creating our very own
PMP to allow the user to select sheets of a
drawing and display information about them.

In order to create a PMP we must first create a
new class that inherits from the
PropertyManagerPage2Handler6 class and
implement all of its members. Within this class is
where we create our pages, and then create
functions that initialise them and show them.

Using the ongoing add-in let’s start by adding a new class to our
project.

Creating the PMP Handler Class
In Visual Studio with the Project open go to the menu Project->Add
Class. Type the name “MyPMPManager” and press enter; this will
create a new class file in our project with a blank declaration.

In this class file add the usual using/Imports lines to the top of the
file and then add the implementing statement to implement from
the PropertyManagerPage2Handler6 class. Place the word public
before the class declaration:

Menus and Property Pages

54

C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;
using System.Runtime.InteropServices.ComTypes;

using SldWorks;
using SWPublished;
using SwConst;
using SwCommands;

using SolidWorksTools;
using SolidWorksTools.File;

namespace DrawingInfoPropertyPageCS
{
 public class MyPMPManager : PropertyManagerPage2Handler6
 {
 }
}

VB

Imports System.Runtime.InteropServices

Imports SldWorks
Imports SWPublished

Menus and Property Pages

55

Imports SwConst
Imports SwCommands

Imports SolidWorksTools
Imports SolidWorksTools.File

Public Class MyPMPMananger
 Implements PropertyManagerPage2Handler6

End Class

As you did in the SwAddin project at the start of the book
implement the required functions for this class by right-clicking on
the PropertyManagerPage2Handler6 text in C# and selecting
Implement Interface, or by pressing enter just after the text in VB.
This will generate a lot of functions; these are all call-back functions
that get called as the user is interacting with our page.

Menus and Property Pages

56

If you are using C# go through each function and remove the line of
code VS created automatically in each function. Then for any
function that asks for a return type of bool add the following line:

return false;

And in the OnActiveXControlCreated add this line:

return 0;

Now we are ready to structure the class. When we come to display
the page we will do so by creating a new instance of this class, and
then call a function to show it. The best time to create the page itself
is in the constructor of the class so that when the new instance is
created so is the page.

The constructor function has no return value and the same name as
the class. Our constructor will ask for an instance of a SolidWorks
Application object as we need this to create new pages:

C#

public MyPMPManager(SldWorks.SldWorks app)
{
}

VB

Public Sub MyPMPMananger(ByVal app As SldWorks.SldWorks)

Menus and Property Pages

57

End Sub

To show the working page without confusing you with more code
just yet we start by creating a blank page with a title.

Declare the following variables that will be used later:

C#

SldWorks.SldWorks swApp;
PropertyManagerPage2 pmPage;
int iErrors;
public bool OK;

VB

Dim swApp As SldWorks.SldWorks
Dim pmPage As PropertyManagerPage2
Dim iErrors As Integer
Public OK As Boolean

Inside the constructor we add just 2 lines to get a blank PMP to
display if no errors occur:

C#

public MyPMPManager(SldWorks.SldWorks app)
{
swApp = app;
// Create new page

Menus and Property Pages

58

pmPage =
(PropertyManagerPage2)swApp.CreatePropertyManagerPage("Drawing
Sheet Info",
(int)(swPropertyManagerPageOptions_e.swPropertyManagerOptions_Ok
ayButton |
swPropertyManagerPageOptions_e.swPropertyManagerOptions_Locked
Page), this, ref iErrors);
}

VB

Public Class MyPMPMananger
 Implements PropertyManagerPage2Handler6

 Dim swApp As SldWorks.SldWorks
 Dim pmPage As PropertyManagerPage2
 Dim iErrors As Integer
 Public OK As Boolean

 Public Sub New(ByVal app As SldWorks.SldWorks)
 swApp = app
 pmPage = app.CreatePropertyManagerPage("DrawingSheet Info",
swPropertyManagerPageOptions_e.swPropertyManagerOptions_OkayB
utton Or
swPropertyManagerPageOptions_e.swPropertyManagerOptions_Locked
Page, Me, iErrors)
 End Sub
End Class

Menus and Property Pages

59

There is no error handling done here but this does show you just how
simple it is to create a PMP.

This creates our new PropertyManangerPage2 object but does not
show it; to do that we must call its Show method. Create a new
function called Show to do this:

C#

public void Show()
{
 pmPage.Show2(0);
}

VB

Public Sub Show()
 pmPage.Show2(0)
End Sub

One more line to add is in the AfterClose method; add the following
line to clear the PMP variable to release the variable:

C#

pmPage = null;

VB

pmPage = Nothing

Menus and Property Pages

60

That is our PMP class done with, time to move on to creating,
showing and correctly disposing of it within our add-in class;
MyAddin.

To begin, add a new variable to the class of the MyPMPManager
called myPMP.

To create and show a new instance of the PMP class in the
_cbCreatePMP function which gets called when the user clicks the
menu item, add the following lines:

C#

public void _cbCreatePMP()
{
 myPMP = new MyPMPManager((SldWorks.SldWorks)iSwApp);
 myPMP.Show();
}

VB

Public Sub _cbCreatePMP()
 myPMP = New MyPMPMananger(iSwApp)
 myPMP.Show()
End Sub

What we have done here is create a new instance of the class,
passing the SolidWorks variable in as required in the constructor of
the PMP class we created, and then calling the Show function we
defined to show the PMP.

Menus and Property Pages

61

That is creating and showing sorted, but we must also correctly
dispose of our PMP once done. In the DisconnectFromSW function
add the following line:

C#

public bool DisconnectFromSW()
{
 RemovePMP();

VB

Public Function DisconnectFromSW() As Boolean Implements
SWPublished.ISwAddin.DisconnectFromSW
 RemovePMP()

And create the function in the class:

C#

public void RemovePMP()
{
 myPMP = null;
}

VB

Public Sub RemovePMP()
 myPMP = Nothing

Menus and Property Pages

62

End Sub

Compile your assembly and start SolidWorks. Create a new file or
open one, then click the menu item “Create PMP” from our add-ins
menu to show our freshly created PMP:

You will notice the green tick which is there because we specified the
OK option when creating the page.

Menus and Property Pages

63

Now you have had a taste of seeing a working PMP its time to add
some error handling in case things go wrong as well as expand our
PMP to check for a Drawing document before showing. If the user is
in a drawing we will then display information about it within the PMP
using some common controls.

Error Handling
Although the add-in works this time, it may not all the time and it is
best to have error handling wherever possible to prevent the
application from crashing itself and even SolidWorks, or behaving
oddly.

The only place we need to add error handling at the moment is in the
constructor of the PMP class. Let’s revise it to the following:

C#

public bool OK;

public MyPMPManager(SldWorks.ISldWorks app)
{
 swApp = app;

 try
 {
 // Create new page
 pmPage =
(IPropertyManagerPage2)swApp.CreatePropertyManagerPage("Drawing
Sheet Info",
(int)(swPropertyManagerPageOptions_e.swPropertyManagerOptions_Ok
ayButton |

Menus and Property Pages

64

swPropertyManagerPageOptions_e.swPropertyManagerOptions_Locked
Page), null, ref iErrors);

 // Check if was created proeprly
 if (iErrors !=
(int)swPropertyManagerPageStatus_e.swPropertyManagerPage_Okay)
 {
 swApp.SendMsgToUser2("Error creating PMP: " +
((swPropertyManagerPageStatus_e)iErrors).ToString(),
(int)swMessageBoxIcon_e.swMbWarning,
(int)swMessageBoxBtn_e.swMbOk);
 OK = false;
 return;
 }

 OK = true;
 }
 catch (Exception e)
 {
 swApp.SendMsgToUser2("Error creating PMP: " + e.Message,
(int)swMessageBoxIcon_e.swMbWarning,
(int)swMessageBoxBtn_e.swMbOk);
 OK = false;
 }
}

VB

Public OK As Boolean
Public Sub New(ByVal app As SldWorks.SldWorks)

Menus and Property Pages

65

 swApp = app

 Try
 ' Create new PMP
 pmPage = app.CreatePropertyManagerPage("DrawingSheet Info",
swPropertyManagerPageOptions_e.swPropertyManagerOptions_OkayB
utton Or
swPropertyManagerPageOptions_e.swPropertyManagerOptions_Locked
Page, Me, iErrors)

 ' Check if was created proeprly
 If iErrors <>
swPropertyManagerPageStatus_e.swPropertyManagerPage_Okay Then
 swApp.SendMsgToUser2("Error creating PMP: " +
CType(iErrors, swPropertyManagerPageStatus_e).ToString(),
swMessageBoxIcon_e.swMbWarning, swMessageBoxBtn_e.swMbOk)
 OK = False
 Return
 End If

 OK = True
 Catch ex As Exception
 swApp.SendMsgToUser2("Error creating PMP: " + ex.Message,
swMessageBoxIcon_e.swMbWarning, swMessageBoxBtn_e.swMbOk)
 OK = False
 End Try
End Sub

Menus and Property Pages

66

We create a new publicly accessible Boolean variable which
indicated whether our page initialised successfully. This can later be
used in our add-in class to determine if it was successful.

Then we add a Try/Catch block around the code and create a new
PMP as we did before, going on to check the iErrors variable passed
in as a reference to the CreatePropertyManagerPage function to
see if any errors occurred. If an error occurred display it to the user in
a message box and set the OK status to false.

That is the friendly errors dealt with but sometimes you can get
unfriendly errors that would otherwise crash your application were
they not caught in the Try/Catch. In the Catch block we show the
error message and set the OK variable to false.

In the _cbCreatePMP function of our add-in class we utilise this
variable by adding an extra line to find out if the class was created
successfully:

C#

public void _cbCreatePMP()
{
 myPMP = new MyPMPManager((SldWorks.SldWorks)iSwApp);
 if (myPMP.OK)
 myPMP.Show();
}

VB

Public Sub _cbCreatePMP()
 myPMP = New MyPMPMananger(iSwApp)

Menus and Property Pages

67

 If myPMP.OK Then
 myPMP.Show()
 End If
End Sub

Property Page Controls
With the PMP firmly in place and the add-in correctly showing, it’s
time to improve on the plain PMP class to create some items and pull
in some useful information.

PMP’s can have the following controls:

Label, Checkbox, Button, Option (Radio checkbox),
Textbox, Listbox, Combobox, Numberbox, Selectionbox,
ActiveX control, Bitmap button, Checkable Bitmap
button, Slider, Bitmap.

All controls have their own properties that can be accessed once you
have created them. By default all controls must specify a caption,
alignment, tooltip and positioning and visibility.

When you create new controls you give them a unique ID. This is
then used to identify the control in the call-back functions; take a
look at all those functions we had to implement in the PMP class
(OnButtonPress, OnCheckboxCheck, OnOptionCheck etc...) and
notice they all provide an integer ID value. This means that when you
want process when a button is pressed, you can easily identify which
button was pressed and perform the relevant actions.

Menus and Property Pages

68

Adding controls
To begin adding items go to our MyPMPManager class. For each
control you add, it is wise to keep class-wide variables (variables
accessible to the entire MyPMPManager class by declaring them
directly inside the class, not inside a function within the class) of 2
things per control; a unique ID, and an instance of the control itself.
These help us identify the control and perform the relevant work in
our code.

As well as adding controls one control already exists by default; that
is the header message on the page. We will come to this shortly.

Start by adding a new label and a textbox that will display the active
drawing filename.

Below the existing variables in the class, add the following:

C#

int uidLabelFilename;
PropertyManagerPageLabel ctrLabelFilename;

VB

Dim uidLabelFilename As Integer
Dim ctrLabelFilename As PropertyManagerPageLabel

I have chosen a naming convention here to help prevent confusion
once the class variables start to grow; all PMP controls ID variable
start with uid*, and all controls start with ctr*, where * is the type
such as Label, Textbox, Bitmap etc...

Menus and Property Pages

69

In the constructor method after the Try/Catch block we want to start
creating our controls if the page was created successfully, so add the
following to call a new function we create next:

C#

if (OK)
 AddControls();

VB

If OK Then AddControls()

Create a method called AddControls in the class. This is where the
work will be done in creating all of the controls on the page.

Within this class we create our first control (a label) and add it to the
page, as well as showing the pre-defined header control mentioned
earlier using the SetMessage3 function:

C#

private void AddControls()
{
 pmPage.SetMessage3("This page will pull in information from the
active drawing",
(int)swPropertyManagerPageMessageVisibility.swImportantMessageBox
,
(int)swPropertyManagerPageMessageExpanded.swMessageBoxMaintai
nExpandState, "Caption");

 // Set IDs

Menus and Property Pages

70

 uidLabelFilename = 1;

 // Set Defaults
 int iStandardOption =
(int)(swAddControlOptions_e.swControlOptions_Enabled |
swAddControlOptions_e.swControlOptions_Visible);
 short sStandardAlign =
(short)swPropertyManagerPageControlLeftAlign_e.swControlAlign_LeftE
dge;
 ctrLabelFilename =
(PropertyManagerPageLabel)pmPage.AddControl(uidLabelFilename,
(short)swPropertyManagerPageControlType_e.swControlType_Label,
"Drawing Filename here", sStandardAlign, iStandardOption, "Drawing
Filename");
}

VB

Public Sub AddControls()
 pmPage.SetMessage3("This page will pull in information from the
active drawing",
swPropertyManagerPageMessageVisibility.swImportantMessageBox,
swPropertyManagerPageMessageExpanded.swMessageBoxMaintainEx
pandState, "Caption")

 ' Set IDs
 uidLabelFilename = 1

 ' Set Defaults

Menus and Property Pages

71

 Dim iStandardOption As Integer =
swAddControlOptions_e.swControlOptions_Enabled Or
swAddControlOptions_e.swControlOptions_Visible
 Dim sStandardAlign As Short =
swPropertyManagerPageControlLeftAlign_e.swControlAlign_LeftEdge
 ctrLabelFilename = pmPage.AddControl(uidLabelFilename,
swPropertyManagerPageControlType_e.swControlType_Label, "Drawing
Filename here", sStandardAlign, iStandardOption, "Drawing Filename")
End Sub

We start by calling the PropertyManagePage2 method
SetMessage3; in a PMP by default there is a GroupBox with a Label
that is added to the top of the page that is set to invisible. Calling this
method and setting its visibility and description shows it in our page.
This is handy for setting a descriptive message to the user about the
page.

Next we set all of the ID values starting at 1 and incrementing for
each control. For now we only have one.

As most of the controls added have a standard option and alignment
setting, the next lines create those standard variables so they do not
have to be repeated for every control.

Finally the PropertyManagerPage2 method AddControl is called to
add the type of control we want (Label) and the returned value is a
handle to the control itself, which we store.

Menus and Property Pages

72

That is all there is to adding controls
to a PMP. Using your gained
knowledge try to add a second control
of type Button after the label,
showing the text “Update Details”.
You create another 2 variables to
store the ID and handle, set the ID to 2
in the AddControls function, and call
AddControl with the id and change
the type to button. If you struggle
take a look at the example in the files.

Menus and Property Pages

73

Call-backs
As discussed, call-backs are just methods that get called (run) by
getting “called” from another class, assembly or process when a
certain event happens (in this case our PMP class gets its call-back
methods called from the SW process).

The call-backs in our PMP are all of the functions that were created
beginning with On or After, such as OnButtonPress or AfterClose.

For example if a button we created was clicked, the function
OnButtonPressed would be run, with the parameter (ID) set to 2, as
that’s what ID we gave the button. In that function is where we
would perform our work.

You will see these call-backs being use in the development of the
final product later in the book.

74

 Add-ins Vs Stand-alones

Key differences

Pros and Cons

Making the right choice

Hybrids

Add-ins Vs Stand-alones

75

When deciding on a large project or development one major thing to
consider is whether to create a pure add-in, a stand-alone program,
or a hybrid; although they all have their advantages and
disadvantages you should always make careful considerations when
choosing your design structure to get the most benefit.

Key Differences
At first glance most people think there is no difference other than
one is a dll/macro or one that shows as a menu item in the title bar,
and the other is an exe or macro that runs anything else. This is a
popular misconception. Let me clarify what exactly makes an add-in
an add-in, and anything else that doesn’t fit that group is
automatically a stand-alone by definition.

Add-ins must be a class that inherits from the ISwAddin interface,
and contain and correctly handle a ConnectToSW and a
DisconnectFromSW function, and to be COM registered. That and
that alone is the definition of an add-in.

Now an add-in wouldn’t be much use without showing in SolidWorks
Add-ins list. To do this you must add a registry entry to the
SolidWorks Addin folder. The standard method is to make the class
register itself with COM and in the com registration functions
create/delete the entry there. This was all done in the previous
chapter on Add-ins, and that is what made them Add-ins.

So, anything else is classed as a stand-alone program, and usually
they are executable windows applications.

Add-ins Vs Stand-alones

76

Pros and Cons
You may be wondering what is the difference between the two types
of program; well firstly the main difference is that one is (and has to
be) loaded by the SolidWorks process (Add-in) and the other is not
(Stand-alone). As we delve deeper into the differences you can make
more of an informed decision as to the right one for you.

Add-in Pros
- Running in-process on the same thread as SolidWorks, so

execution of code is slightly faster.
- Can use all SW API, including “in-process only” methods.
- Available to user directly in SolidWorks, so more integrated.
- Can use call-backs

Add-in Cons
- Not ideal for debugging or updating as have to close

SolidWorks and all machines using the Add-in every time you
want to make a single change.

- Harder to create and understand for beginners, often
clouding simple tasks in complicated COM registration, call-
back handling and other tasks.

- Harder to distribute to clients as requires installer package to
register the add-in, or instructions to them to perform a
manual registration. Further complications when registering
with multiple platforms.

Add-ins Vs Stand-alones

77

Stand-alone Pros
- Ideal for debugging, fast updating, no need to close

SolidWorks.
- Much easier to understand than add-ins and less code (1 line)

to connect to SolidWorks and begin using the API.
- Easiest type of program to distribute to client as only need to

provide the project files for them to run.
- Freedom to build and view visual aspects and general non-

SolidWorks related operations without having to open
SolidWorks every time; can run totally independently.

Stand-alone Cons
- Slight performance decrease due to running out-of-process.
- Cannot run in-process API functions.
- Not directly integrated into SolidWorks, which may be a

desired requirement.
- Cannot receive call-backs.

Add-ins Vs Stand-alones

78

Making the right choice
So what does all this mean for you, the developer? The first
overriding consideration that would force you to have to use an add-
in would be if your project required call-backs or in-process
functions. These are call-backs for notifications and events such as
when a file is saved, or active document changed, or call-backs for
property manage page events and the likes.

In-process functions are few and far between but include functions
such as SldWorks::PreviewDoc and SldWorks::GetPreviewBitmap.

If you do not require either of these functionalities the next question
is do you need any of the benefits of an add-in such as do you need
the absolute best speed performance in your code or can you
sacrifice a small amount of speed for convenience? Programs such as
COSMOS would be dreadful as a purely stand-alone program
without a lot of optimization code as they do intensive math
calculations on active models and so the in-process speed benefit
really comes to its own.

Another question would be do you need menu items to show as soon
as SolidWorks is opened, or perform tasks on SolidWorks start-up? If
so an add-in is your choice again.

The general rule of thumb is if you do not need any of the above then
chose a stand-alone program for the benefits it gives on the
debugging, updating and simplicity side of things, but it is all
personal preference and some people just prefer add-ins regardless,
and others prefer stand-alone.

Add-ins Vs Stand-alones

79

Hybrids
Just because there are 2 ways to interact with SolidWorks does not
mean your product has to use a single method, you can easily
incorporate the advantages of both methods to get the best of both
worlds.

In general, you create an add-in project to create your menus and
PMPs in SolidWorks, then either call up forms and functions that you
create within the same add-in project to do what you like, or you
execute a stand-alone application, or create a new instance of a COM
object, both of which you would create as separate projects.

Communication between the hybrid projects can be done via
argument strings being passed in, a localised data source, registry, or
arbitrary methods, whichever suit your needs best.

80

Planning and Product Design

Why Plan

Pre-development Stage

Initial Development Stage

Adding Functionality

Debugging and Testing

Planning and Product Design

81

Many leisure programmers and professionals alike know how to
create software programs to achieve their goals, but how many are
correctly thought out and structured and how many are just
designed as they go and never made to be the best they can be?

This chapter will introduce you to the different processes of planning
your product design prior to, during and after development, and the
reasons and pros/cons of each method, as well as the importance of
planning and design. Don’t worry about trying to follow every detail
explained here, we will follow this plan later when creating our actual
working add-in project, and follow this planning methodology.

Why plan?
The first question you may ask yourself if you have developed
programs in the past, is why do you need to plan in the first place
when you can just develop your software as you go and it works once
you’re finished? There are many reasons why good planning and
design are important and although not essential, very beneficial.

The most important reason for planning is often the make sure you
are choosing the right approach to a solution before you get too far
down the line and realise it cannot be done that way, meaning you
will have wasted all that development time for nothing. For example,
a classic case in context of this book would be to create a standalone
application where call-backs turn out to be needed in your program.

Planning also gives you a good idea in your head before you start, of
the path you will be following during the development, and think
ahead of any potential problems or benefits that could be achieved
by approaching the project in a certain way.

Planning and Product Design

82

Pre-development Stage
The main structural planning and major choices are made at the pre-
development stage; these include choosing a language to develop
with, the platform, the type of application (exe, library, add-in,
service, com), and the structure and workflow of the project forms,
user interfaces, database structures and so on, that flow into the
initial development stage naturally.

Programming Language
When it comes to choosing a programming language the choice is
usually more down to preference rather than requirement these
days. The general rule is the lower the language (lower meaning
closer to the hardware/machine code) the more powerful the
language due to its closer relation with the machine it is to be used
on, and the better performance/speed benefits are possible. The
higher the language the more the programmer compensates
performance/speed for ease of use, speed of development and more
power for expansion. A list of common programming languages,
from low level to high level, is as follows:

• Assembly 80x86
• C
• C++
• .NET (C#, VB etc...)
• VB/VBA

As you can see normal VB/VBA ranks highly, which means it is very
obscured from the machine code itself, and so a lot of power is lost
using this language, but it gives the benefit that almost any
computer literate person can pick up the language and start
developing.

Planning and Product Design

83

Assembly is the lowest level language you can program, short of
implementing binary directly. To program assembly languages you
need not only to understand the language, but the platform it is to
work with, the hardware it is to access (CPU, Motherboard) and great
understanding of maths, logic, hardware and ideally microchips. It is
by no means a language to pick up like most others, but doing so
gives you great power and understanding of the entire
hardware/software configuration you are working with.

C++ was, and possibly still is (topic of great debate) the developers
standard of programming language and has been for a long time.
Implementing an object oriented (language that can have classes)
version of C. The language is not too high up to lose power or
performance, and is not too low to understand for non-rocket
scientists! C++ adapts itself perfectly to game programming, hacking
(or pen-testing as we now call it) and mathematical and system
programs and the likes; all the things that most hobbyist
programmers wonder “how the heck is that done?”.

With the evolution of .Net over the last 7 years since its early days
back in Feb 2002 when I started using it, it has come a long long way.
At first the main argument was that veteran C++ programmers
detested the framework as it had “poor performance” like VB and
was too high-level to be any use, and not for “real programmers”.
Overcoming this viewpoint in more recent years, the CLR (service
that runs .Net programs) has been greatly improved to give much
better performance, parrying with C++ in many areas now, with the
added bonus of much cleaner code, easier and faster development
and the likes. Recently for the C++ programmers there was also
released C++ .Net, which is all of the C++ language syntax, but
running on the .Net FrameWork. This language fills most of the
region when deciding a suitable language.

Planning and Product Design

84

Finally, we have VB and VBA; programming languages don’t get
much higher than this, or much simpler. The only words I would have
to say on them is they are good as a learning tool and quick and dirty
macro creator, nothing more. It can be pushed to great scales and
huge projects can be developed (and still are) entirely in VB and VBA,
but the reasoning behind them will not be from a judicious point of
view, but more along the lines of the programmer not wanting, or
having the ability to move forward.

To wrap it up, a quick check that I personally do to chose a language
is thus:

- Do I need to create a driver, protocol, or access/modify
extremely low level system parameters?

o Assembly
- Is best performance from OS functions and my own

processor-intensive functions absolutely critical?
o C++

- Can the above 2 statements be overlooked, and I do not
need one, and can live without two?

o .Net
- Am I creating a quick test or tiny project to learn or perform a

very small task?
o VB/VBA

When your choice is not tied down to external preferences and you
do not need to squeeze every last ounce of performance out of a
program, or do something very specialist like drivers then .Net is
almost always the standard choice.

Planning and Product Design

85

Type of Application
As well as deciding on a programming language you should also
decide on the type of application you are creating. This means, is
your project going to be a simple stand-alone application (exe), or a
library for indirect use by other applications (dll), a windows service
(to be run by the svchost application) or a combination of the lot.
Like the programming languages the type of applications all has
their benefits too:

EXE

The most common program created and often the only one created
by most everyday programmers is a stand-alone application with an
extension .exe standing for executable. As the name suggests the
program can be executed (run) directly, with no need to be invoked
or called by another. It is a self-contained file that is called directly;
this suites most applications.

DLL

A DLL, or Dynamically Linked Library, is a class/library project that is
the same in almost every way to an exe project, except the class
project is not executable, it has no mian() function or entry point for
the system to class as its starting point, so it cannot simply run it by
itself. Library projects are used for 2 main reasons; the first is
because your project is to be a set of functions or methods that are
to be called by another program (notice how this describes a
SolidWorks add-in, SolidWorks being the “other program” that calls
the dll add-in). The second main reason is that you are creating a
large project and wish to split parts of your application that are to be
re-used a lot in sections, or like to be managed and updated
separately. This is very handy for say an anti-virus program that is

Planning and Product Design

86

constantly updating its heuristics detection algorithms; this code
would be in a separate dll project and updated/compiled separately.
If it were not and were part of the main exe project, then every time
this little part was updating the entire program would have to be re-
compiled and released again!

There are many more applications for library projects, but the end
result is that the dll itself cannot be directly run.

WINDOWS SERVICE

A windows service is an exe file when compiled, but with a different
header than a normal windows application; a service must be
installed using installutil.exe, and then must be run under the control
of one of the windows service host processes. Services have the
advantage of events and hooks into the windows environment, being
run before windows has logged on if needed, and having special
privileges and powers. Windows services are beyond the scope of
this book.

So picking the type of project; pretty simple in this case, it will be a
stand-alone exe all the way. If your project starts to get large all you
would need to do is add a new project to your solution in Visual
Studio (File->New->Project), and create a class project, then drag
and drop all files you wish to separate into another dll into this
project, and in the main project just add a new using/Imports
reference to the namespace that the class project has, and a
reference to the class project from the Add Reference... tool.

Planning and Product Design

87

Structure, Interface & Design
Once you have your language and your type of application chosen,
it’s almost time to move on to the actually development, but just
before you do, take the time to think in advance exactly what you
will be doing for your initial development; how you plan to structure
the program, what you would like the user to see in an ideal world.

The way I do this is to think about how I would like the program to
act (forms, interface etc...), how it would ideally get the required
information to and from the user, but without even thinking about
the programming implications - just thinking about ideals.

Keeping notes and drawings on the forms and how I want them to
look, I start to make notes on what each structure has to accomplish,
and apply real programming logic to the thought process to see what
part of the ideals are possible, and what simply are not and then how
to work around them.

For example say you would like a program that displays SolidWorks
files in a window like Windows Explorer, but instead of the
thumbnails you ideally would like an actual editable model view
window for each item, where the model can be zoomed, pans and
manipulated on the fly. Now everything about this program is
possible except the edibility of the models, as there is no mechanism
in SolidWorks to do this, so you would have to sacrifice an ideal for a
realism by having a viewable read-only 3D model preview in place of
the edible one, and then on double-click or similar have your
program launch a SolidWorks instance and open that part. Improving
on that model you could think ahead to keeping a single SolidWorks
instance open in your program the first time an edit is attempted,
and then re-using it by just hiding/showing it as required, drastically
improving performance.

Planning and Product Design

88

At this stage you would not actually implement these functions or
interfaces but merely develop a sort of development and design
model that you intend to be as accurate as possible to what the final
product should look and behave like.

The next stage is to start creating your dummy program, “acting”
like it should, but not actually performing the real tasks.

Planning and Product Design

89

Initial Development Stage
With your development plan well thought out and with the
programming logic thought about but not implemented, it is time to
start structuring your program to be fully interactive but with no real
functionality; by doing this you can see if you hit any pot holes in the
design flow or theory, before you set into heavy coding.

Most programs have a main form, or main screen that the user is
presented with. Start there, and add your menu items if required,
controls as you visualised them in your pre-development planning,
and any other visual elements required. Expand the program by
adding all the forms that are required for the program.

The next stage is to get the program structured and logical flow
working; this is where you add event handlers to menu items,
buttons and form events, and add dummy (blank) functions to them
that are ready to fill to do what they should. For example, if your
main form has a button called “Show Users” that should open
another form and show all users of the program currently logged on,
then you would attach a new event handler to the button and within
that event handler function, add a call to another function called
“ShowUsers()”, that you then create but leave blank. Going through
your program adding these functions allows you to see the flow
easily before getting confused by actual coding.

Planning and Product Design

90

Adding Functionality
With your forms and controls created, and your structure and flow
implemented as much as possible, you now start to program the
actual working code that performs the tasks your program is
designed to do; the order in which you do this is usually the order
which the user would be going through your program. For example,
if your program was working with an SQL database as its data
source, the first step would be to present the user with a setup
screen to configure the server. With than done the next step may be
to create and manage users for the program, so that functionality
would come next.

With the majority of functionality added you will always find yourself
going back and tweaking the user interface or structure due to
programming problems that make it impossible, or simply the fact
you do not like way it works once it’s functional. In this case you
follow the same procedure as before, but on a smaller level. This
helps greatly in cleaning up the design from the functionality, and
helps create cleaner, better programs.

Planning and Product Design

91

Debugging and Testing
Once the initial program code is complete and theoretically
functional and correct you start with simple testing. Check your
program behaves as it should do, and if it doesn’t you start to debug
through analysing your code, debugging using VS, adding watches
and other methods to find out what is going wrong or behaving
badly.

Starting with local D&T, if you plan to distribute your program it is
highly recommended to find some willing users or other machines to
test your program on, preferably with a range of operating systems,
setups and software that is installed on the machines. Many things
can affect programs functionality and behaviour and a program that
works on one machine perfectly may not work at all on another, and
you have to adapt your code to suit (if you wish to support the other
machines).

Planning and Product Design

92

Methods of Debugging
Debugging is one of those things that never has a clear cut answer,
and never will; there are never really even a fixed set of methods for
debugging either. Every thing, concept and view on debugging is
always adapting and is always unique to each situation. The best way
to learn debugging is to get hands-on experience and adapt over
time to find your own way. No book, person or thing can tell you how
you can debug a program, only guide you and provide examples and
explanations, and that is all I will try to do here, to give you an
understanding of how I tackle problems in code and how to
overcome certain common scenarios.

Stepping and Watching
When you think of a problem with software you think of it crashing,
more than you think of it behaving wrongly, but both responses need
dealing with as they are errors in the code.

Stepping and watching the code as it runs to see where it starts to
produce the bad results is the most common method of debugging
any software; we will use this technique in the next chapter.

If you have a firm understanding of your program (which you should)
and can understand what is, or more correctly should, be happening
to your program, variables and objects throughout each step, then
you can compare them to what is actually happening.

Sometimes stepping line by line is not practical, and it’s much better
to just have break points at key stages, or going up another stage,
having break conditions or unit testing.

Planning and Product Design

93

The stepping technique
What better way to learn than by doing; to keep things very simple
just open the sample program ZeroDivideCrash under chapter 5 of
the source code:

C#

using System;
using System.Windows.Forms;
public class Form1 : Form
{
 public Form1()
 {
 int i = 0;
 int j = 1;
 int k = j / i;
 }
}

VB

Public Class Form1
 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Dim i As Integer = 0
 Dim j As Integer = 1
 Dim k As Integer = j / i
 End Sub

End Class

Planning and Product Design

94

All we do here is forcefully cause an exception to be thrown to crash
the program; this demonstrates how a problem could occur and we
are now going to debug and fix it.

Most crashes give you more details when you have Visual Studio
installed, and offer a “Details” button, which can help you trace back
the error. In this case it does not, so we are starting blind. In these
types of cases you tend to ask the user where and when it crashes, if
it is consistent and other factors, to give you an idea of where to start
looking.

In this little program we would start at the first line on the form
constructor. Add a break-line to the first line (int i/Dim i) by left-
clicking in the grey bar to the left of the line. This will add a red circle
to indicate a break-point. When you run your project in debug mode
and the program counter reaches this point in your code, it will
break-out, stop, and let you debug.

Build and run your project in Debug mode (F5
or Debug->Start Debugging). Visual Studio
will build your project and start it up in a

Planning and Product Design

95

hosted environment to track its code and stop when it hits break-
points or exceptions.

When the program stops at a break-point the line will be highlighted
yellow and Visual Studio should (doesn’t always) be brought into
focus automatically.

At this point the program has
reached the line where the first
integer is to be defined, but has not
yet executed this line; you now have
several options: step in, step over,
continue or stop.

If you continue (F5) the code carries
on executing as normal until the

next break-point or stop. This is used if you have analysed the state
of the program at this break-point and are ready to continue.

If you step into the line this would follow any program jumps. If this
line was a function or call and the source-code was available then it
would move the stepping inside that function and stop at the first
line waiting for the next command.

If you step over (most common) then the debugger moves to the
next line of code and stops. This is the same as stepping into except
if the line was a function or call it would execute the entire function,
return, and then move the debug stepper, so anything inside that
function would not be stepped over line by line.

For this case we are just going to step over each line to pick up on the
erroneous line; press F10 to step over the first line. This will execute

Planning and Product Design

96

that line, move down one and stop on the next line (defining j
variable).

Take the time here to analyse the
program state; hover your cursor over the
i variable to bring up a tip to show that it
has been initialised to 0.

Press F10 again to step over the second
line and check that j is now initialised to 1

 Finally try to step over the next line; this time instead of moving to
the next line the debugger will catch the exception that gets thrown
and display an exception message box showing details of the
exception. If you are using VB then due to the higher-level obscurity
of the language you do not get error-line notification like in C#.

VB C#

The C# description is much more informative stating that it is a
“DivideByZero Exception”, telling us we attempted to divide by zero.
If we did not already know this it would have informed us that a
variable of the algorithm on that particular line was 0, which would
help in finding the problem.

Planning and Product Design

97

VB has a different exception, this one is less descriptive and it is an
“InvalidOperation exception”, and merely states that an arithmetic
operation resulted in an overflow. Unless you know a bit more about
how operators work and the terms used most would not understand
what this message meant as easily as the C# message.

To stop the debugger as the program cannot proceed, press
Shift+F5 or from the menu select Debug->Stop Debugging.

Let’s take one step back from this method and use just the normal
debugging environment alone to see what results we get. Remove
the break point from the first line by clicking in the left column again,
and re-run the project in debug mode (F5). The program runs
without breaks until a problem occurs, and then breaks out
automatically and enters stepping mode. This is how you tend to
start with debugging as you are not expected to step line by line
through a program often tens of thousands of lines long trying to
anticipate errors. More common is letting the debugger fault out,
and then back-tracing from there to the potential problem, forming
an image in your mind of the state of the program at that time as you
go, and understanding what is out of place and what is not.

Client-Side Debugging
More often than not, the errors or bugs that you do not pick up from
the initial stages of your design get picked up by the alpha/beta
testers or clients actually using your software. This is when the real
debugging takes place.

The first major disadvantage is the fact that the error is likely to
happen away from the developers’ (you’re) machine, and so no
source code, no Visual Studio debugging message, nothing. This is
where you have to rely on other techniques.

Planning and Product Design

98

Whenever a project gets large it is always a good idea to have certain
key elements in the design. One crucial element is a log; most
applications are going to fail at some point in their lifetime in the
scenario above, and you will have no way to trace back to a point in
code. If you add the option in your program to log events (usually to
a text file or SQL server) as it is running, then you can get the user
who experiences the problem to send you their log. To demonstrate
this purpose we are going to add a very basic logging function to the
ZeroDivideCrash sample.

I find it is always best to show you working examples than it is to fill
you with too much literature, to allow you to understand the
operations in your own way as everyone learns differently.

Debug Logging
Take a look at the example in the Chapter 5 folder called
DebugLogging:

C#

using System;
using System.Windows.Forms;
using System.IO;
using System.Reflection;

public class Form1 : Form
{
 private StreamWriter swLog;
 private string sLogFilename;

 public Form1()

Planning and Product Design

99

 {
 InitialiseLog();
 Log(" ");
 Log("Form starting");
 Log("========================");

 Log("About to initialise i");
 int i = 0;
 Log("i = " + i.ToString());
 Log("About to initialise j");
 int j = 1;
 Log("j = " + j.ToString());
 Log("About to divide j / i");
 int k = j / i;
 Log("k = " + k.ToString());
 }

 private void Log(string message)
 {
 // Create log or open existing
 swLog = new StreamWriter(sLogFilename, true);
 swLog.WriteLine(DateTime.Now.ToString("dd/MM/yy hh:mm:ss") +
" " + message);
 swLog.Close();
 }

 private void InitialiseLog()
 {
 // Get this exe location and append a \log.txt to it

Planning and Product Design

100

 sLogFilename =
Path.Combine(Path.GetDirectoryName(Assembly.GetExecutingAssembl
y().Location), "log.txt");
 }
}

VB

Imports System.IO
Imports System.Reflection

Public Class Form1
 Private swLog As StreamWriter
 Private sLogFilename As String

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 InitialiseLog()
 Log(" ")
 Log("Form starting")
 Log("========================")

 Log("About to initialise i")
 Dim i As Integer = 0
 Log("i = " + i.ToString())
 Log("About to initialise j")
 Dim j As Integer = 1
 Log("j = " + j.ToString())

Planning and Product Design

101

 Log("About to divide j / i")
 Dim k As Integer = j / i
 Log("k = " + k.ToString())
 End Sub

 Private Sub Log(ByVal message As String)
 ' Create log or open existing
 swLog = New StreamWriter(sLogFilename, True)
 swLog.WriteLine(DateTime.Now.ToString("dd/MM/yy hh:mm:ss") +
" " + message)
 swLog.Close()
 End Sub

 Private Sub InitialiseLog()
 ' Get this exe location and append a \log.txt to it
 sLogFilename =
Path.Combine(Path.GetDirectoryName(Assembly.GetExecutingAssembl
y().Location), "log.txt")
 End Sub
End Class

Once the InitialiseLog function has been called, you can call the Log
function to log an event anywhere in the program and at any time.

You may notice that we open and close the log file every time we
write to the log. We could improve performance by opening the log
once at the start of the program, and then closing it when finished.
The problem with this method is that if our program crashes
unexpectedly then the file may remain in an opened state and the
pointer to the file is lost. It is always best to use the first method

Planning and Product Design

102

unless performance is critical. If it is then the next method may be
more suitable.

Instead of writing your own log,
another option is to write directly to
the OS’s Application Log that can be
viewed in the event viewer.

To add entries to the OS events log
the entries have to be added to an
event log. You can add entries to pre-existing logs (such as
Application Log, System Log etc...) or create your own using the Log
Name field. Once in a log, you have to define the source so the log
knows where the entry is coming from; this is typically the name of
your application or section within your application.

Finally the actual event telling the log what happened or went wrong
and needs to be logged. The code below is very straight forward.
Find the example project with the example files.

C#

using System;
using System.Windows.Forms;
using System.Diagnostics;

namespace EventLogCS
{
 public partial class Form1 : Form
 {
 public Form1()
 {

Planning and Product Design

103

 InitializeComponent();
 }

 private void button2_Click(object sender, EventArgs e)
 {
 Process.Start("eventvwr.msc");
 }

 private void button1_Click(object sender, EventArgs e)
 {
 if (!EventLog.SourceExists(tbSource.Text))
 EventLog.CreateEventSource(tbSource.Text, tbName.Text);

 EventLog.WriteEntry(tbSource.Text, tbEvent.Text);
 }
 }
}

VB

Imports System.Diagnostics

Public Class Form1

 Private Sub button2_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles button2.Click
 Process.Start("eventvwr.msc")
 End Sub

Planning and Product Design

104

 Private Sub button1_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles button1.Click
 If (Not EventLog.SourceExists(tbSource.Text)) Then
EventLog.CreateEventSource(tbSource.Text, tbName.Text)

 EventLog.WriteEntry(tbSource.Text, tbEvent.Text)
 End Sub
End Class

The disadvantage here is less flexibility, harder to get the user to
send you a log file, harder to implement an automatic sending of the
log file in your program. The advantages are mainly speed and

Planning and Product Design

105

conformity. I personally opt for custom debug logging in 90% of
cases.

106

Development

The Blueprint

The Add-in Class

The PMP Layout

Toggling Pages / Reacting to Events

Setting up Hooks

Part Events

Assembly Events

Drawing Events

Tidy Up

Enhancements

Development

107

Putting everything you have learned so far into practice it is time to
develop a fully-function working SolidWorks add-in following correct
development planning and structure, and then later take this
product right the way through deployment, licensing and
distribution and sales!

The Blueprint
After much thought while writing this book, I was trying to think of a
project that could be developed that would best cover some
advanced API mainly focused around the grey area of add-ins, event
call-backs, notifications and enumerators as well as touching on
custom properties, component trees and other functions, to show
good planning and structure, provide problems to solve, and all this
to be done in one add-in that is small enough to fit in the middle of a
book that covers so much more too.

The project is simple; an add-in that is automatically loaded on
SolidWorks launch that monitors events and auto-loads itself when
the active model is changed.

The structure is fully Property Manager Page oriented, with
advanced multiple page functionality - when the active model is a
part you see one page, an assembly another, and a drawing another.

For the Assembly page we create a simple costing function that
reads all of the assembly’s components “Cost” custom property and
calculates a total cost. On top of that, when a component is selected
from the 3D view or feature tree that components cost is displayed
and can be set directly from the assembly.

For the Part page we display Created By, Creation Date and Modify
Date of the currently selected feature.

Development

108

For the Drawing page we display the current drawing filename and
an event-driven drop-down list of all current sheets in the list. When
the user changes the active sheet the drop-down selection changes
to match or alternatively the user can select a sheet from the drop-
down list and have it activate that sheet too.

For the active sheet the total number of views is displayed as well as
another event-driven drop-down list showing all views in the list. The
same thing happens; when the user selects a view the drop-down list
selection changes to match and vice-versa.

For the selected view the page displays the Referenced File,
Referenced Configuration, Orientation, Display Style and Scale.

Development

109

The Add-in Class
The Add-in class is the class that implements the ISwAddin
interface, handles COM registration and menu/toolbar objects as
well as the SolidWorks Applications events and functions.

Create a new class project called SWInfo or similar. Add all the usual
SolidWorks references including the solidworkstools.dll. Add the
using/Imports entries and create a new class called swAddin
implementing the ISwAddin object with the COM registration
functions. This will give you a blank SwAddin class. If you have
forgotten some steps, just copy/paste the SwAddin class from the
DrawingInfo project back in chapter 2.

With a blank ISwAddin class implemented, set the Title and
Description tags in the attributes and COM registration function,
and add the variables to the class as shown:

C#

SldWorks.SldWorks iSwApp;
ICommandManager iCmdMgr;
PMPInfo myPMP;

 [SwAddin(Description = "Provide Live Information of active
document/selection", Title = "SWInfo", LoadAtStartup = true)]
public class swAddin : ISwAddin
...
[ComRegisterFunctionAttribute]
public static void RegisterFunction(Type t)
{
...

Development

110

addinkey.SetValue("Description", "Provide Live Information of active
document/selection");
 addinkey.SetValue("Title", "SWInfo");
...
}

VB

Dim iSwApp As SldWorks.SldWorks
Dim iCmdMgr As SldWorks.CommandManager

Dim myPMP As PMPInfo
<SwAddin(Description:="Provide Live Information of active
document/selection", Title:="SWInfo", LoadAtStartup:=True)> _
...
<ComRegisterFunction()> Public Shared Sub RegisterFunction(ByVal t
As Type)
...
addinkey.SetValue("Description", "Provide Live Information of active
document/selection")
 addinkey.SetValue("Title", "SWInfo")
...
End Sub

Note: the variable of type PMPInfo does not exist yet – this is going
to be the class we create later, but for now add it ready.

Take note the iSwApp variable is of type SldWorks not ISldWorks;
this is so we can add event handlers later.

Development

111

Add the following ConnectToSW and DisconnectFromSW
functions:

C#

public bool ConnectToSW(object ThisSW, int Cookie)
{
 iSwApp = (SldWorks.SldWorks)ThisSW;
 iSwApp.SetAddinCallbackInfo(0, this, Cookie);
 iCmdMgr = iSwApp.GetCommandManager(Cookie);
 AddCommandMgr();
 AddEventHooks();
 return true;
}

public bool DisconnectFromSW()
{
 RemoveCommandMgr();
 RemovePMP();
 RemoveEventHooks();
 iSwApp = null;
 GC.Collect();
 return true;
}

VB

Public Function ConnectToSW(ByVal ThisSW As Object, ByVal Cookie
As Integer) As Boolean Implements
SWPublished.ISwAddin.ConnectToSW
 iSwApp = ThisSW

Development

112

 iSwApp.SetAddinCallbackInfo(0, Me, Cookie)
 iCmdMgr = iSwApp.GetCommandManager(Cookie)
 AddCommandMgr()
 AddEventHooks()
 ConnectToSW = True
End Function
Public Function DisconnectFromSW() As Boolean Implements
SWPublished.ISwAddin.DisconnectFromSW
 RemovePMP()
 RemoveCommandMgr()
 RemoveEventHooks()
 iSwApp = Nothing
 GC.Collect()
 DisconnectFromSW = True
End Function

The function is just the same as any other add-in – it adds call-back
information, gets a command manager and calls an
AddCommandMgr function which adds a single item to a menu (see
chapter 2 again for information on this).

This time note the extra function calls to AddEventHooks and
RemoveEventHooks; we will cover these shortly.

In the AddCommandMgr function (copied from DrawingInfo
project) change the title of the menu and the item to the following:

C#

cmdGroup = iCmdMgr.CreateCommandGroup(1, "SWInfo", "", "", 3);

Development

113

cmdGroup.AddCommandItem2("Launch SWInfo", 0, "", "", 0,
"_cbCreatePMP", "", 0, (int)(swCommandItemType_e.swMenuItem |
swCommandItemType_e.swToolbarItem));

VB

cmdGroup = iCmdMgr.CreateCommandGroup(1, "SWInfo", "", "", 3)

cmdGroup.AddCommandItem2("Launch SWInfo", 0, "", "", 0,
"_cbCreatePMP", "", 0, swCommandItemType_e.swMenuItem Or
swCommandItemType_e.swToolbarItem)

So far if we were to run this add-in now we would have a blank add-in
that registers with COM, connects to SolidWorks and adds a single
menu item that calls a function called _cbCreatePMP in our project.

If you already have the _cbCreatePMP copied from the
DrawingInfo, modify it to the following code. If not then create a
new one like so:

C#

public void _cbCreatePMP()
{
 myPMP = new PMPInfo((SldWorks.SldWorks)iSwApp);
 myPMP.ActiveModel = (ModelDoc2)iSwApp.ActiveDoc;
}

Development

114

VB

Public Sub _cbCreatePMP()
 myPMP = New PMPInfo(iSwApp)
 myPMP.ActiveModel = iSwApp.ActiveDoc
End Sub

This function creates a new instance of a PMPInfo class (created
next), and sets its public property ActiveModel to the current Active
Model. You will not get any IntelliSense showing up for the myPMP
object yet as we have not created it.

That is almost all the Add-in class needs to do; however for our PMP
we want to automatically react to the active model changing so for
that we add event handlers to the SolidWorks object: cue the
AddEventHooks and RemoveEventHooks functions.

C#

private void AddEventHooks()
{
 iSwApp.ActiveModelDocChangeNotify += new
DSldWorksEvents_ActiveModelDocChangeNotifyEventHandler(iSwApp_
ActiveModelDocChangeNotify);
}
private void RemoveEventHooks()
{
 iSwApp.ActiveModelDocChangeNotify -= new
DSldWorksEvents_ActiveModelDocChangeNotifyEventHandler(iSwApp_
ActiveModelDocChangeNotify);
}

Development

115

VB

Public Sub AddEventHooks()
 AddHandler iSwApp.ActiveModelDocChangeNotify, AddressOf
iSwApp_ActiveModelDocChangeNotify
End Sub

Public Sub RemoveEventHooks()
 RemoveHandler iSwApp.ActiveModelDocChangeNotify, AddressOf
iSwApp_ActiveModelDocChangeNotify
End Sub

These functions have one task – they add and remove a function
from being called when the ActiveModelDocChangeNotify is called
by SolidWorks whenever the active model is changed.

The iSwApp_ActiveModelDocChangeNotify is the reference to a
function that has the same structure as the
DSldWorksEvents_ActiveModelDocChangeNotifyEventHandler
delegate. The delegate is a function that returns and integer and
takes no parameters, so to make this work you need a new function
called iSwApp_ActiveModelDocChangeNotify that has the same
structure as the delegate.

Sounds complicated but all it boils down to is creating a normal
function that returns an integer and takes no parameters, and is
named the same as the name you choose to give it in the
AddEventHooks function. Here it is with the following lines of code:

Development

116

C#

int iSwApp_ActiveModelDocChangeNotify()
{
 _cbCreatePMP();
 return 0;
}

VB

Public Function iSwApp_ActiveModelDocChangeNotify() As Integer
 _cbCreatePMP()
 Return 0
End Function

When the active model is changed in SolidWorks it raises an
ActiveModelDocChangeNotify event, which is sent to all add-ins
that are registered to receive them (thanks to SetAddinCallbackInfo
we added in the ConnectToSW function).

From there our add-in class receives this event message and raises
the local event in the iSwApp object called
ActiveModelDocChangeNotify; because we added a handler
(function associated with this event) to this event, the function
specified in the handler (iSwApp_ActiveModelDocChangeNotify)
gets called.

In this function we call the _cbCreatePMP function every time the
model changes; if you recall a few pages back, this function sets the
myPMP objects ActiveModel property to the new active model.

Development

117

You may want to review the finished SwAddin class from the
example files at this point to clarify you have everything correct.

The PMP Layout
With the Add-in class created its time to create the PMP class to do
all of the magic.

Create a new class (Project->Add Class, or Ctrl+Shift+C); call it
PMPInfo so that it matches our variables created in the Add-in class.

Copy the entire contents of the DrawingInfo chapter 2 project PMP
class (MyPMPMananger file) between the class structure tags and
paste it inside our PMPInfo class structure. You will be pasting the
lines starting from the swApp variable right down to the
OnWhatsNew function.

Change the title of the page in the constructor function from
“DrawingSheetInfo” to “SWInfo”, and the option to a Close button:

C#

pmPage =
(IPropertyManagerPage2)swApp.CreatePropertyManagerPage("SwInfo",
(int)(swPropertyManagerPageOptions_e.swPropertyManagerOptions_Cl
oseDialogButton), this, ref iErrors);

 VB

pmPage = app.CreatePropertyManagerPage("SwInfo",
swPropertyManagerPageOptions_e.swPropertyManagerOptions_CloseD
ialogButton, Me, iErrors)

Development

118

In the AddControls function delete all the lines of code except the
first (SetMessage3), and change that line to the following:

C#

pmPage.SetMessage3("Awaiting Initialisation",
(int)swPropertyManagerPageMessageVisibility.swImportantMessageBox
,
(int)swPropertyManagerPageMessageExpanded.swMessageBoxMaintai
nExpandState, "SWInfo");

VB

pmPage.SetMessage3("Awaiting Initialisation",
swPropertyManagerPageMessageVisibility.swImportantMessageBox,
swPropertyManagerPageMessageExpanded.swMessageBoxMaintainEx
pandState, "SWInfo")

This sets the yellow message box message at the top of the page.
This will get updated dynamically on model document changes, so
technically this initialisation message should never be seen.

Delete the uid* and ctr* variables that are no longer needed so the
only variables remaining are the swApp, pmPage, iErrors and OK.

Change the default Show function to the following:

C#

public void Show()
{
 ToggleView();

Development

119

 // IMPORTANT! If you don't specify stacked show, will close on most
events

pmPage.Show2((int)swPropertyManagerPageShowOptions_e.swPropert
yManagerShowOptions_StackPage);
}

VB

Public Sub Show()
 ToggleView()
 ' IMPORTANT! If you don't specify stacked show, will close on most
events

pmPage.Show2(swPropertyManagerPageShowOptions_e.swPropertyM
anagerShowOptions_StackPage)
End Sub

We call a function called ToggleView first (which will be created
later) that does the job of showing the correct page based on the
current active model type.

Then we show the page as normal but this time with the option of
StackPage; this allows the page to stay open throughout a lot more
situations than without it as we want our page to be visible and
displayed all the time.

The Properties
Throughout the program we will often want to cast the active model
to either DrawingDoc, PartDoc or AssemblyDoc. I neat trick to do

Development

120

this more cleanly in your code instead of constantly casting the
ModelDoc2 variable is to create a set of properties.

Properties are like variables with a twist; they have a Get and Set
function within them only. Get is called when the user asks for the
value, and Set is called when the properties is attempted to be set.

Add the following properties to the class:

C#

private SldWorks.ModelDoc2 _activemod;
public SldWorks.ModelDoc2 ActiveModel
{
 get { return _activemod; }
 set
 {
 _activemod = value;
 ActiveModelChanged();
 }
}

public SldWorks.DrawingDoc ActiveDrawing { get { return
(DrawingDoc)ActiveModel; } }
public SldWorks.PartDoc ActivePart { get { return (PartDoc)ActiveModel;
} }
public SldWorks.AssemblyDoc ActiveAssembly { get { return
(AssemblyDoc)ActiveModel; } }

VB

Private _activemod As SldWorks.ModelDoc2

Development

121

Public Property ActiveModel() As SldWorks.ModelDoc2
 Get
 Return _activemod
 End Get
 Set(ByVal value As SldWorks.ModelDoc2)
 _activemod = Value
 ActiveModelChanged()
 End Set
End Property

Public ReadOnly Property ActiveDrawing() As SldWorks.DrawingDoc
 Get
 Return ActiveModel
 End Get
End Property
Public ReadOnly Property ActivePart() As SldWorks.PartDoc
 Get
 Return ActiveModel
 End Get
End Property
Public ReadOnly Property ActiveAssembly() As SldWorks.AssemblyDoc
 Get
 Return ActiveModel
 End Get
End Property

Note the private variable declared first called _activemod. This is the
real variable that all the properties reference and cast.

Development

122

Now when we want to get the currently active model as a
DrawingDoc object all we need to do is state ActiveDrawing as a
variable.

Adding the Controls
In the AddControls function after the SetMessage3 line, add the
following variables (declare them in the class first):

C#

iStandardOption =
(int)(swAddControlOptions_e.swControlOptions_Enabled |
swAddControlOptions_e.swControlOptions_Visible);
iStandardGroupOption =
(int)(swAddGroupBoxOptions_e.swGroupBoxOptions_Expanded |
swAddGroupBoxOptions_e.swGroupBoxOptions_Visible);
iDisabledOption =
(int)swAddControlOptions_e.swControlOptions_Visible;
sStandardAlign =
(short)swPropertyManagerPageControlLeftAlign_e.swControlAlign_LeftE
dge;

VB

iStandardOption = swAddControlOptions_e.swControlOptions_Enabled
Or swAddControlOptions_e.swControlOptions_Visible
iStandardGroupOption =
swAddGroupBoxOptions_e.swGroupBoxOptions_Expanded Or
swAddGroupBoxOptions_e.swGroupBoxOptions_Visible
iDisabledOption = swAddControlOptions_e.swControlOptions_Visible

Development

123

sStandardAlign =
swPropertyManagerPageControlLeftAlign_e.swControlAlign_LeftEdge

These will be used as our standard control options and alignments
instead of constantly writing out the long enumerator names.

Auto-set ID
As you will be aware by now every time you create a new control for
a PMP you need to give it a unique ID. Previously we have done this
manually by typing 1, 2, 3, 4 and so on sequentially for each new
variable. Although that is alright when you are creating small pages,
it gets rather tedious and messy when you are creating 10s or 100s of
controls.

Using the tricks of a Property object, here is a nice way to have an
auto-incrementing ID that you can assign to variables.

C#

private int _nid;
public int NextID { get { return _nid++; } }

VB

Private _nid As Integer
Public ReadOnly Property NextID()
 Get
 _nid += 1
 Return _nid

Development

124

 End Get
End Property

By adding an incremental command to the underlying integer
variable, every time the user “Gets” the variable using the property
name NextID, it returns a number and then adds one to it, so the
next time it is called it is the next number in the sequence. Declare
this in your class next to your variable declarations. When a new
unique ID is needed write “ = NextID”.

Creating the Controls
To simplify creation of page controls that are created over and over
just like the ID’s a set of common functions are created so that only
the required information need be entered each time instead of all of
it:

C#

private PropertyManagerPageButton CreateButton(int id, string text,
string caption, PropertyManagerPageGroup parent)
{
 return (PropertyManagerPageButton)parent.AddControl(id,
(short)swPropertyManagerPageControlType_e.swControlType_Button,
text, sStandardAlign, iStandardOption, caption);
}

private PropertyManagerPageNumberbox CreateReadOnlyNumbox(int
id, PropertyManagerPageGroup parent)
{

Development

125

 return (PropertyManagerPageNumberbox)parent.AddControl(id,
(short)swPropertyManagerPageControlType_e.swControlType_Numberb
ox, "", sStandardAlign, iDisabledOption, "");
}

private PropertyManagerPageCombobox CreateCombobox(int id,
PropertyManagerPageGroup parent)
{
 return (PropertyManagerPageCombobox)parent.AddControl(id,
(short)swPropertyManagerPageControlType_e.swControlType_Combob
ox, "", sStandardAlign, iStandardOption, "");
}

private PropertyManagerPageTextbox CreateTextbox(int id, string text,
string tip, PropertyManagerPageGroup parent)
{
 return (PropertyManagerPageTextbox)parent.AddControl(id,
(short)swPropertyManagerPageControlType_e.swControlType_Textbox,
text, sStandardAlign, iStandardOption, tip);
}

private PropertyManagerPageTextbox CreateReadOnlyTextbox(int id,
string text, string tip, PropertyManagerPageGroup parent)
{
 return (PropertyManagerPageTextbox)parent.AddControl(id,
(short)swPropertyManagerPageControlType_e.swControlType_Textbox,
text, sStandardAlign, iDisabledOption, tip);
}

Development

126

private PropertyManagerPageLabel CreateLabel(int id, string label,
string tip, PropertyManagerPageGroup parent)
{ return (PropertyManagerPageLabel)parent.AddControl(id,
(short)swPropertyManagerPageControlType_e.swControlType_Label,
label, sStandardAlign, iStandardOption, tip); }

VB

Private Function CreateButton(ByVal id As Integer, ByVal text As String,
ByVal caption As String, ByVal parent As PropertyManagerPageGroup)
As PropertyManagerPageButton
 Return parent.AddControl(id,
swPropertyManagerPageControlType_e.swControlType_Button, text,
sStandardAlign, iStandardOption, caption)
End Function

Private Function CreateReadOnlyNumbox(ByVal id As Integer, ByVal
parent As PropertyManagerPageGroup) As
PropertyManagerPageNumberbox
 Return parent.AddControl(id,
swPropertyManagerPageControlType_e.swControlType_Numberbox, "",
sStandardAlign, iDisabledOption, "")
End Function

Private Function CreateCombobox(ByVal id As Integer, ByVal parent As
PropertyManagerPageGroup) As PropertyManagerPageCombobox

Development

127

 Return parent.AddControl(id,
swPropertyManagerPageControlType_e.swControlType_Combobox, "",
sStandardAlign, iStandardOption, "")
End Function

Private Function CreateTextbox(ByVal id As Integer, ByVal text As
String, ByVal tip As String, ByVal parent As
PropertyManagerPageGroup) As PropertyManagerPageTextbox
 Return parent.AddControl(id,
swPropertyManagerPageControlType_e.swControlType_Textbox, text,
sStandardAlign, iStandardOption, tip)
End Function

Private Function CreateReadOnlyTextbox(ByVal id As Integer, ByVal
text As String, ByVal tip As String, ByVal parent As
PropertyManagerPageGroup) As PropertyManagerPageTextbox
 Return parent.AddControl(id,
swPropertyManagerPageControlType_e.swControlType_Textbox, text,
sStandardAlign, iDisabledOption, tip)
End Function

Private Function CreateLabel(ByVal id As Integer, ByVal label As String,
ByVal tip As String, ByVal parent As PropertyManagerPageGroup) As
PropertyManagerPageLabel
 Return parent.AddControl(id,
swPropertyManagerPageControlType_e.swControlType_Label, label,
sStandardAlign, iStandardOption, tip)
End Function

Development

128

We use the class variables iStandardOption, iDisabledOption and
sStandardAlign in each function to declare the options so they must
be available within the class and the functions must existing within
that same class.

The passed in parameters are used to add a control to the PMP
Group object that is passed in also. This makes creating controls
much neater now. Creating a Textbox is now as simple as:

myTextbox = CreateTextbox(1, “My Textbox”, “”,
myGroup)

Instead of writing out this every time:

myTextbox =
(PropertyManagerPageTextbox)parent.AddControl(1,
(short)swPropertyManagerPageControlType_e.swControlT
ype_Textbox, “My Textbox”, sStandardAlign,
iStandardOption, “”)

 See the benefit?

All controls will be created in the AddControls function after the
code that is already in the function.

For each control you need to add 2 new variables to the class; title
them uidTypeName and ctrTypeName replacing Type with the
type of control (Label, Textbox, Button, Group etc...) and Name with
the name you want to remember the control by.

For each control; before creating the control call “uid* = NextID” on
the uid* variable for that control. It is a good idea to add a function
called SetIDs that initialises the _nid variable to 1 (_nid = 1) and has
all of the “... = NextID” lines of code in it, then call SetIDs() from the

Development

129

AddControls function first before creating any controls. This tidies
up the AddControls function more making it easier to read. See this
implementation in the source code provided.

We are going to create 3 group boxes (so create 3 uid* Integer
variables and 3 ctrGroup* PropertyManagerPageGroup variables).
Each group (one for Drawing, Part and Assembly) will contain all of
the controls that should be displayed for each active model type.
Each group will look like this:

Drawing Assembly Part

Development

130

And here is the code within the AddControls function to create all of
the above:

C#

SetIDs();

#region Drawing Group
// DRAWING INFO GROUP
// ==============================
// Create group
ctrGroupDrawingInfo =
(PropertyManagerPageGroup)pmPage.AddGroupBox(uidGroupDrawingI
nfo, "Drawing Information",
(int)(swAddGroupBoxOptions_e.swGroupBoxOptions_Expanded |
swAddGroupBoxOptions_e.swGroupBoxOptions_Visible));

// Filename
ctrLabelFilename = CreateLabel(uidLabelFilename, "Filename", "",
ctrGroupDrawingInfo);
ctrTextboxFilename = CreateReadOnlyTextbox(uidTextboxFilename, "",
"", ctrGroupDrawingInfo);

// SHEET INFO GROUP
// ==============================
ctrGroupSheetInfo =
(PropertyManagerPageGroup)pmPage.AddGroupBox(uidGroupSheetInf
o, "Sheets", iStandardGroupOption);
// Sheets

Development

131

ctrLabelSheets = CreateLabel(uidLabelSheets, "Sheets", "",
ctrGroupSheetInfo);
ctrComboboxSheets = CreateCombobox(uidComboboxSheets,
ctrGroupSheetInfo);

// Total Views
ctrLabelTotalViews = CreateLabel(uidLabelTotalViews, "Total Views", "",
ctrGroupSheetInfo);
ctrNumboxTotalViews =
CreateReadOnlyNumbox(uidNumboxTotalViews, ctrGroupSheetInfo);

// VIEW INFO GROUP
// ==============================
ctrGroupViewInfo =
(PropertyManagerPageGroup)pmPage.AddGroupBox(uidGroupViewInfo
, "Views", iStandardGroupOption);
// Views
ctrLabelViews = CreateLabel(uidLabelViews, "Views", "",
ctrGroupViewInfo);
ctrComboboxViews = CreateCombobox(uidComboboxViews,
ctrGroupViewInfo);

// Referenced File
ctrLabelReferenceFile = CreateLabel(uidLabelReferenceFile,
"Referenced File", "", ctrGroupViewInfo);
ctrTextboxReferenceFile =
CreateReadOnlyTextbox(uidTextboxReferenceFile, "", "",
ctrGroupViewInfo);

// Referenced Config

Development

132

ctrLabelReferenceConfig = CreateLabel(uidLabelReferenceConfig,
"Referenced Config", "", ctrGroupViewInfo);
ctrTextboxReferenceConfig =
CreateReadOnlyTextbox(uidTextboxReferenceConfig, "", "",
ctrGroupViewInfo);

// Orientation
ctrLabelOrientation = CreateLabel(uidLabelOrientation, "Orientation", "",
ctrGroupViewInfo);
ctrTextboxOrientation = CreateReadOnlyTextbox(uidTextboxOrientation,
"", "", ctrGroupViewInfo);

// Display Style
ctrLabelDisplayStyle = CreateLabel(uidLabelDisplayStyle, "Display
Style", "", ctrGroupViewInfo);
ctrTextboxDisplayStyle =
CreateReadOnlyTextbox(uidTextboxDisplayStyle, "", "",
ctrGroupViewInfo);

// Scale
ctrLabelScale = CreateLabel(uidLabelScale, "Scale", "",
ctrGroupViewInfo);
ctrTextboxScale = CreateReadOnlyTextbox(uidTextboxScale, "", "",
ctrGroupViewInfo);

#endregion Drawing Group

#region Part Group
// ==============================

Development

133

ctrGroupPartInfo =
(PropertyManagerPageGroup)pmPage.AddGroupBox(uidGroupPartInfo,
"Selected Feature Information", iStandardGroupOption);

// Created By
ctrLabelFeatCreatedBy = CreateLabel(uidLabelFeatCreatedBy, "Created
By", "", ctrGroupPartInfo);
ctrTextboxFeatCreatedBy =
CreateReadOnlyTextbox(uidTextboxFeatCreatedBy, "", "",
ctrGroupPartInfo);

// Created Date
ctrLabelFeatCreateDate = CreateLabel(uidLabelFeatCreateDate,
"Creation Date", "", ctrGroupPartInfo);
ctrTextboxFeatCreateDate =
CreateReadOnlyTextbox(uidTextboxFeatCreateDate, "", "",
ctrGroupPartInfo);

// Modify Date
ctrLabelFeatModifyDate = CreateLabel(uidLabelFeatModifyDate, "Modify
Date", "", ctrGroupPartInfo);
ctrTextboxFeatModifyDate =
CreateReadOnlyTextbox(uidTextboxFeatModifyDate, "", "",
ctrGroupPartInfo);

#endregion Part Group

#region Assembly Group
// ==============================

Development

134

ctrGroupAsmInfo =
(PropertyManagerPageGroup)pmPage.AddGroupBox(uidGroupAsmInfo,
"Assembly Information", iStandardGroupOption);

// Total Cost
ctrLabelTotalCost = CreateLabel(uidLabelTotalCost, "Total Cost", "",
ctrGroupAsmInfo);
ctrTextboxTotalCost = CreateReadOnlyTextbox(uidTextboxTotalCost, "",
"", ctrGroupAsmInfo);

// Update Cost
ctrButtonUpdateCost = CreateButton(uidButtonUpdateCost, "Update
Cost", "", ctrGroupAsmInfo);

// Selected part get/set cost
// ==============================
ctrGroupCostInfo =
(PropertyManagerPageGroup)pmPage.AddGroupBox(uidGroupCostInfo,
"Cost Information", iStandardGroupOption);

// Part Cost
ctrLabelPartCost = CreateLabel(uidLabelPartCost, "Part Cost", "",
ctrGroupCostInfo);
ctrTextboxPartCost = CreateTextbox(uidTextboxPartCost, "", "",
ctrGroupCostInfo);

// Set Part Cost
ctrButtonSetPartCost = CreateButton(uidButtonSetPartCost, "Set Cost",
"", ctrGroupCostInfo);

Development

135

#endregion Assembly Group

VB

SetIDs()

' DRAWING INFO GROUP
' ==============================
' Create group
ctrGroupDrawingInfo = pmPage.AddGroupBox(uidGroupDrawingInfo,
"Drawing Information",
swAddGroupBoxOptions_e.swGroupBoxOptions_Expanded Or
swAddGroupBoxOptions_e.swGroupBoxOptions_Visible)

' Filename
ctrLabelFilename = CreateLabel(uidLabelFilename, "Filename", "",
ctrGroupDrawingInfo)
ctrTextboxFilename = CreateReadOnlyTextbox(uidTextboxFilename, "",
"", ctrGroupDrawingInfo)

' SHEET INFO GROUP
' ==============================
ctrGroupSheetInfo = pmPage.AddGroupBox(uidGroupSheetInfo,
"Sheets", iStandardGroupOption)
' Sheets
ctrLabelSheets = CreateLabel(uidLabelSheets, "Sheets", "",
ctrGroupSheetInfo)
ctrComboboxSheets = CreateCombobox(uidComboboxSheets,
ctrGroupSheetInfo)

Development

136

' Total Views
ctrLabelTotalViews = CreateLabel(uidLabelTotalViews, "Total Views", "",
ctrGroupSheetInfo)
ctrNumboxTotalViews =
CreateReadOnlyNumbox(uidNumboxTotalViews, ctrGroupSheetInfo)

' VIEW INFO GROUP
' ==============================
ctrGroupViewInfo = pmPage.AddGroupBox(uidGroupViewInfo, "Views",
iStandardGroupOption)
' Views
ctrLabelViews = CreateLabel(uidLabelViews, "Views", "",
ctrGroupViewInfo)
ctrComboboxViews = CreateCombobox(uidComboboxViews,
ctrGroupViewInfo)

' Referenced File
ctrLabelReferenceFile = CreateLabel(uidLabelReferenceFile,
"Referenced File", "", ctrGroupViewInfo)
ctrTextboxReferenceFile =
CreateReadOnlyTextbox(uidTextboxReferenceFile, "", "",
ctrGroupViewInfo)

' Referenced Config
ctrLabelReferenceConfig = CreateLabel(uidLabelReferenceConfig,
"Referenced Config", "", ctrGroupViewInfo)
ctrTextboxReferenceConfig =
CreateReadOnlyTextbox(uidTextboxReferenceConfig, "", "",
ctrGroupViewInfo)

Development

137

' Orientation
ctrLabelOrientation = CreateLabel(uidLabelOrientation, "Orientation", "",
ctrGroupViewInfo)
ctrTextboxOrientation = CreateReadOnlyTextbox(uidTextboxOrientation,
"", "", ctrGroupViewInfo)

' Display Style
ctrLabelDisplayStyle = CreateLabel(uidLabelDisplayStyle, "Display
Style", "", ctrGroupViewInfo)
ctrTextboxDisplayStyle =
CreateReadOnlyTextbox(uidTextboxDisplayStyle, "", "",
ctrGroupViewInfo)

' Scale
ctrLabelScale = CreateLabel(uidLabelScale, "Scale", "",
ctrGroupViewInfo)
ctrTextboxScale = CreateReadOnlyTextbox(uidTextboxScale, "", "",
ctrGroupViewInfo)

' PART INFO GROUP
' ==============================
ctrGroupPartInfo = pmPage.AddGroupBox(uidGroupPartInfo, "Selected
Feature Information", iStandardGroupOption)

' Created By
ctrLabelFeatCreatedBy = CreateLabel(uidLabelFeatCreatedBy, "Created
By", "", ctrGroupPartInfo)

Development

138

ctrTextboxFeatCreatedBy =
CreateReadOnlyTextbox(uidTextboxFeatCreatedBy, "", "",
ctrGroupPartInfo)

' Created Date
ctrLabelFeatCreateDate = CreateLabel(uidLabelFeatCreateDate,
"Creation Date", "", ctrGroupPartInfo)
ctrTextboxFeatCreateDate =
CreateReadOnlyTextbox(uidTextboxFeatCreateDate, "", "",
ctrGroupPartInfo)

' Modify Date
ctrLabelFeatModifyDate = CreateLabel(uidLabelFeatModifyDate, "Modify
Date", "", ctrGroupPartInfo)
ctrTextboxFeatModifyDate =
CreateReadOnlyTextbox(uidTextboxFeatModifyDate, "", "",
ctrGroupPartInfo)

' ASSEMBLY INFO GROUP
' ==============================
ctrGroupAsmInfo = pmPage.AddGroupBox(uidGroupAsmInfo,
"Assembly Information", iStandardGroupOption)

' Total Cost
ctrLabelTotalCost = CreateLabel(uidLabelTotalCost, "Total Cost", "",
ctrGroupAsmInfo)
ctrTextboxTotalCost = CreateReadOnlyTextbox(uidTextboxTotalCost, "",
"", ctrGroupAsmInfo)

Development

139

' Update Cost
ctrButtonUpdateCost = CreateButton(uidButtonUpdateCost, "Update
Cost", "", ctrGroupAsmInfo)

' Selected part get/set cost
' ==============================
ctrGroupCostInfo = pmPage.AddGroupBox(uidGroupCostInfo, "Cost
Information", iStandardGroupOption)

' Part Cost
ctrLabelPartCost = CreateLabel(uidLabelPartCost, "Part Cost", "",
ctrGroupCostInfo)
ctrTextboxPartCost = CreateTextbox(uidTextboxPartCost, "", "",
ctrGroupCostInfo)

' Set Part Cost
ctrButtonSetPartCost = CreateButton(uidButtonSetPartCost, "Set Cost",
"", ctrGroupCostInfo)

So far our add-in will now create a valid PMP with all of the controls
shown in the 3 preview images before. When the Show function is
called the ToggleView function gets called within it to correctly
show only 1 group at any one time, and that group should be based
on the active model type.

Development

140

Toggling Pages / Reacting to Events
If you recall back near the beginning of this section we created the
property called ActiveModel that had a Get function to return the
underlying _activemod variable. In the Set variable as well as setting
the _activemod variable, it also called a function we have not
created yet called ActiveModelChanged.

In the SwAddin class when the active model changed we placed the
code:

myPMP.ActiveModel = iSwApp.ActiveDoc

This calls the Set function of the ActiveModel property whenever
the SolidWorks active model changes, which in turn triggers this
ActiveModelChanged function.

Create this function in our PMPInfo class to response to the change
and detect the type of model now active and then hide/show the
correct group of controls for that model. Start by adding a new
variable to the class called doctype of type swDocumentTypes_e:

C#

private void ActiveModelChanged()
{
 if (OK && ActiveModel != null)
 {
 doctype = (swDocumentTypes_e)ActiveModel.GetType();
 SetupModelHooks();
 InitialiseInformation();
 Show();

Development

141

 } }

VB

Private Sub ActiveModelChanged()
 if (OK And Not ActiveModel is Nothing Then
 doctype = ActiveModel.GetType()
 SetupModelHooks()
 InitialiseInformation()
 Show()
 End If
End Sub

Several things happen here; firstly we check that the PMP was
created successfully in the first place with the OK variable we set
inside the constructor function. Next we check that the active model
is actually a model not a blank SolidWorks screen. If all that is ok we
get the type of document that is active and store it in the variable
doctype.

Once we have a SolidWorks model, and know its type we call
another function called SetupModelHooks that creates model-
specific event handlers for detecting things like when the user selects
a drawing sheet, a feature, or a part in an assembly.

Next we initial information in a function called InitialiseInformation.

The call to Show is there to call the ToggleView function to
hide/show the correct control groups, but also to make the page
visible again automatically as changing models closes it.

Development

142

C#

private void ToggleView()
{
 bool drawing, assembly, part;
 drawing = doctype == swDocumentTypes_e.swDocDRAWING;
 assembly = doctype == swDocumentTypes_e.swDocASSEMBLY;
 part = doctype == swDocumentTypes_e.swDocPART;

 ctrGroupDrawingInfo.Visible = drawing;
 ctrGroupSheetInfo.Visible = drawing;
 ctrGroupViewInfo.Visible = drawing;
 ctrGroupPartInfo.Visible = part;
 ctrGroupAsmInfo.Visible = assembly;
 ctrGroupCostInfo.Visible = assembly;
}

VB

Private Sub ToggleView()
 Dim drawing, assembly, part As Boolean
 drawing = assembly = part = False
 If doctype = swDocumentTypes_e.swDocDRAWING Then drawing =
True
 If doctype = swDocumentTypes_e.swDocASSEMBLY Then assembly
= True
 If doctype = swDocumentTypes_e.swDocPART Then part = True

 ctrGroupDrawingInfo.Visible = drawing
 ctrGroupSheetInfo.Visible = drawing

Development

143

 ctrGroupViewInfo.Visible = drawing
 ctrGroupPartInfo.Visible = part
 ctrGroupAsmInfo.Visible = assembly
 ctrGroupCostInfo.Visible = assembly
End Sub

Setting the Visible property of a PropertyManagerPageGroup
object hides/shows it from the page without destroying the controls,
so they can easily be shown when the correct model is active,
without having to re-create them all over again.

Development

144

Setting up Hooks
Going back to the ActiveModelChanged function, the first function
to be called in the list is SetupModelHooks; this function attached
event handlers to the active model based on its type as we want to
respond differently to each type (drawing, part or assembly):

C#

private void SetupModelHooks()
{
 switch (doctype)
 {
 case swDocumentTypes_e.swDocDRAWING:
 ActiveDrawing.NewSelectionNotify += new
DDrawingDocEvents_NewSelectionNotifyEventHandler(ActiveDrawing_
NewSelectionNotify);
 break;
 case swDocumentTypes_e.swDocPART:
 ActivePart.NewSelectionNotify += new
DPartDocEvents_NewSelectionNotifyEventHandler(ActivePart_NewSele
ctionNotify);
 break;

 case swDocumentTypes_e.swDocASSEMBLY:
 ActiveAssembly.NewSelectionNotify += new
DAssemblyDocEvents_NewSelectionNotifyEventHandler(ActiveAssembl
y_NewSelectionNotify);
 break;

 } }

Development

145

VB

Private Sub SetupModelHooks()
 Select Case doctype
 Case swDocumentTypes_e.swDocDRAWING
 AddHandler ActiveDrawing.NewSelectionNotify, AddressOf
ActiveDrawing_NewSelectionNotify
 Case swDocumentTypes_e.swDocPART
 AddHandler ActivePart.NewSelectionNotify, AddressOf
ActivePart_NewSelectionNotify
 Case swDocumentTypes_e.swDocASSEMBLY
 AddHandler ActiveAssembly.NewSelectionNotify, AddressOf
ActiveAssembly_NewSelectionNotify
 End Select
End Sub

 For parts we need to be aware when the user selection changes if
the selection is a feature, and pull in creator information for that
feature.

For assemblies again we need to monitor for selections, this time to
check if a component was selected and pull in the cost for that part.

For drawings we need to monitor for selection of views.

Development

146

Part Events
Starting with the easiest event first; the part. The function of the
add-in working with parts is to display the currently selected features
information. When the user makes a new selection in an active part
model the ActivePart_NewSelectionNotify function is fired. Create
this function in the class and add the following code:

C#

int ActivePart_NewSelectionNotify()
{
 SelectionMgr selmgr = (SelectionMgr)ActiveModel.SelectionManager;
 Feature feat;
 try
 {
 // This line will throw an exception and go to catch if selected object
is not a feature
 feat = (Feature)selmgr.GetSelectedObject6(1, -1);
 ctrTextboxFeatCreateDate.Text = feat.DateCreated;
 ctrTextboxFeatCreatedBy.Text = feat.CreatedBy;
 ctrTextboxFeatModifyDate.Text = feat.DateModified;
 }
 catch { return 0; }

 return 0;
}

VB

Private Function ActivePart_NewSelectionNotify() As Integer

Development

147

 Dim selmgr As SelectionMgr = ActiveModel.SelectionManager
 Dim feat As Feature
 Try
 ' This line will throw an exception and go to catch if selected object
is not a feature
 feat = selmgr.GetSelectedObject6(1, -1)
 ctrTextboxFeatCreateDate.Text = feat.DateCreated
 ctrTextboxFeatCreatedBy.Text = feat.CreatedBy
 ctrTextboxFeatModifyDate.Text = feat.DateModified
 Catch
 Return 0
 End Try

 Return 0
End Function

Using the ActiveModel property to get the current model we then
get the currently selected object using the Selection Manager.

The typical way of checking an object is to check its type using
GetSelectedObjectType but in this case as there are many types
that can be converted to a feature we just try a forceful unchecked
cast from object to Feature.

If it can be cast it is ok, if not it will throw an error which we handle
gracefully in a Try/Catch block.

With the feature to hand all that is needed then is to set the PMP
controls to the relevant information.

Development

148

Assembly Events
The assembly event is almost the same. Its function is to get the
currently selected component and pull in its Cost value (stored in a
custom property of the model called “Cost”), as well as provide a
button that tallies up all of the components costs to a Total Cost
field.

Firstly define a new variable of type ModelDoc2 in the class (not
within this function, we set it in this function not declare it), and call
it selectedAsmModel. We can then reference this in any function of
the class save passing it as a parameter in functions all over the
place:

C#

int ActiveAssembly_NewSelectionNotify()
{
 SelectionMgr selmgr = (SelectionMgr)ActiveModel.SelectionManager;
 swSelectType_e seltype =
(swSelectType_e)selmgr.GetSelectedObjectType3(1, -1);

 if (seltype == swSelectType_e.swSelCOMPONENTS)
 {
 Component2 com = (Component2)selmgr.GetSelectedObject6(1, -1);
 selectedAsmModel = (ModelDoc2)com.GetModelDoc2();

 UpdateSelectedComponentCost(false);
 }
 return 0;
}

Development

149

VB

Private Function ActiveAssembly_NewSelectionNotify() As Integer
 Dim selmgr As SelectionMgr = ActiveModel.SelectionManager
 Dim seltype As swSelectType_e = selmgr.GetSelectedObjectType3(1,
-1)

 If seltype = swSelectType_e.swSelCOMPONENTS Then
 Dim com As Component2 = selmgr.GetSelectedObject6(1, -1)
 selectedAsmModel = com.GetModelDoc2()
 UpdateSelectedComponentCost(False)
 End If

 Return 0
End Function

The reason we return 0 for all of these event functions is a
success/fail value for SolidWorks to process. Ignore this and just
return 0 which is success.

Here we get the selected object like in the part function and this time
check the type of it to see whether it is a component the user has
selected

 If it is, we get the associated model and call a function called
UpdateSelectedComponentCost which accepts a Boolean used to
tell the function whether to get the components cost information to
the PMP textbox, or to set it from the PMP to the custom property:

C#

private void UpdateSelectedComponentCost(bool set)

Development

150

{
 if (set)
 {
 selectedAsmModel.DeleteCustomInfo2("", "Cost");
 selectedAsmModel.AddCustomInfo3("", "Cost",
(int)swCustomInfoType_e.swCustomInfoText, ctrTextboxPartCost.Text);
 }
 else
 ctrTextboxPartCost.Text = selectedAsmModel.get_CustomInfo2("",
"Cost");
}

VB

Private Sub UpdateSelectedComponentCost(ByVal setValue As
Boolean)
 If setValue Then
 selectedAsmModel.DeleteCustomInfo2("", "Cost")
 selectedAsmModel.AddCustomInfo3("", "Cost",
swCustomInfoType_e.swCustomInfoText, ctrTextboxPartCost.Text)
 Else
 ctrTextboxPartCost.Text =
selectedAsmModel.GetCustomInfoValue("", "Cost")
 End If
End Sub

When setting the cost value of the part we could check to see if the
custom property already exists and if so set it using the set function,
else add it using the add function. For simplicity in this case we

Development

151

simply call delete first to remove any existing one, so the add call
after will always do the job.

Two more events of the assembly group in the PMP are the buttons
we created with the text “Update Cost” and “Set Cost” to update the
assembly Total Cost field or set the currently selected parts cost. We
need not add any event handler to capture these button clicks as it is
added as standard to any PMP. Go to the already created blank
OnButtonPress function and add the following:

C#

public void OnButtonPress(int Id)
{
 if (Id == uidButtonSetPartCost)
 UpdateSelectedComponentCost(true);
 else if (Id == uidButtonUpdateCost)
 CalculateAssemblyCost();
}

VB

Public Sub OnButtonPress(ByVal Id As Integer) Implements
SWPublished.IPropertyManagerPage2Handler6.OnButtonPress
 If Id = uidButtonSetPartCost Then
 UpdateSelectedComponentCost(True)
 ElseIf Id = uidButtonUpdateCost Then
 CalculateAssemblyCost()
 End If
End Sub

Development

152

Checking the Id variable passed in to this function identifies which
button was pressed, based on the Id we gave to the button when we
created it. If you recall, all these values got stored in their respective
uid* variables so we check using them.

If the “Set Cost” button for the part cost was clicked, call the
UpdateSelectedComponentCost function we created just to set the
cost. If the “Update Cost” for the assemblies total cost was clicked
then call another function to calculate this cost:

C#

private void CalculateAssemblyCost()
{
 // Loop top level components
 Configuration config =
(Configuration)ActiveModel.GetActiveConfiguration();
 object[] comps =
(object[])((Component2)config.GetRootComponent()).GetChildren();

 if (comps == null)
 return;

 float runningtotal = 0;
 foreach (Component2 comp in comps)
 {
 // Get cost from component
 ModelDoc2 mod = (ModelDoc2)comp.GetModelDoc2();
 if (mod == null)
 continue;

Development

153

 float f;
 if (float.TryParse(mod.get_CustomInfo2("", "Cost"), out f))
 runningtotal += f;
 }

 ctrTextboxTotalCost.Text = runningtotal.ToString();
}

VB

Private Sub CalculateAssemblyCost()
 ' Loop top level components
 Dim config As Configuration = ActiveModel.GetActiveConfiguration()
 Dim comps() As Object = config.GetRootComponent().GetChildren()

 If comps Is Nothing Then Return
 Dim runningtotal As Double = 0

 For Each comp As Component2 In comps
 ' Get cost from component
 Dim model As ModelDoc2 = comp.GetModelDoc2()
 If model Is Nothing Then Continue For

 Dim f As Double
 If Double.TryParse(model.GetCustomInfoValue("", "Cost"), f) Then
runningtotal += f
 Next
 ctrTextboxTotalCost.Text = runningtotal.ToString()
End Sub

Development

154

Using a standard component traversal technique we traverse all
components of the current configuration and get their respective
models if possible. Then using that model we attempt to get the cost
custom property and convert it to a number. If that succeeds we add
it to a running total as we go, and finally set the PMP text box to that
value.

You could expand on this code here to check if the component is
visible or not, suppressed or not, or any other value to decide
whether to exclude it from the costing or not.

Development

155

Drawing Events
That’s the two easy ones out of the way – now for the big one, the
drawing events!

Because we are using Combo-boxes on this group, start by creating a
function that will add missing functionality to these controls – the
ability to select an item in the list based on a string value instead of a
position index:

C#

private void SelectComboboxItem(PropertyManagerPageCombobox
box, int itemcount, string name)
{
 short i;
 for (i = 0; i < itemcount; i++)
 if (box.get_ItemText(i) == name)
 box.CurrentSelection = i;
}

VB

Private Sub SelectComboboxItem(ByVal box As
PropertyManagerPageCombobox, ByVal itemcount As Integer, ByVal
name As String)
 For i As Short = 0 To itemcount - 1
 If box.get_ItemText(i) = name Then
 box.CurrentSelection = i
 End If
 Next

Development

156

End Sub

Accepting a combo-box control, item count and text to select as
parameters this function loops all items and compares their returned
text value with the required one. If it matches it selects it. Simple but
does the job for the tasks we will need it for.

Creating the new selection function of the drawing - the reason for
monitoring the user selection is that when the user selects a view we
want that view to select in our PMP Views combo-box. Using the
same checks as in the other methods we check whether the selection
is a View, it selects the matching item in the combo-box using the
function above, and then stores the current View object in a variable
for use in other functions, and finally calls a function to deal with
view changes:

C#

int ActiveDrawing_NewSelectionNotify()
{
 SelectionMgr SelMgr = (SelectionMgr)ActiveModel.SelectionManager;
 swSelectType_e type =
(swSelectType_e)SelMgr.GetSelectedObjectType3(1, -1);
 if (type == swSelectType_e.swSelDRAWINGVIEWS)
 {
 SelectComboboxItem(ctrComboboxViews, iDrawingViewsCount,
((View)SelMgr.GetSelectedObject6(1, -1)).Name);
 selectedDrawingView = (View)SelMgr.GetSelectedObject6(1, -1);

 DrawingViewSelectionChanged();

Development

157

 }
 return 0;
}

VB

Private Function ActiveDrawing_NewSelectionNotify() As Integer
 Dim SelMgr As SelectionMgr = ActiveModel.SelectionManager
 Dim type As swSelectType_e = SelMgr.GetSelectedObjectType3(1, -1)

 If type = swSelectType_e.swSelDRAWINGVIEWS Then
 SelectComboboxItem(ctrComboboxViews, iDrawingViewsCount,
SelMgr.GetSelectedObject6(1, -1).Name)
 selectedDrawingView = SelMgr.GetSelectedObject6(1, -1)
 DrawingViewSelectionChanged()
 End If

 Return 0
End Function

Make sure you create a variable of type View called
selectedDrawingView in the class like you did for the
selectedAsmModel previously so it can be accessed by any function
within the class.

The variable iDrawingViewsCount is created in the next bit of code
so don’t worry about that yet; it stores the current number of views
in the sheet, and thus in the combo-box showing the view names
which is needed for the SelectComboboxItem function.

Development

158

So when a user selects a view, the variable selectedDrawingView
gets set to that view, and then the function
DrawingViewSelectionChanged gets calls – its job is to fill in the
text fields with information about the selected drawing view:

C#

private void DrawingViewSelectionChanged()
{
 if (selectedDrawingView == null) return;
 ctrTextboxReferenceFile.Text =
selectedDrawingView.ReferencedDocument.GetPathName();
 ctrTextboxReferenceConfig.Text =
selectedDrawingView.ReferencedConfiguration;
 ctrTextboxOrientation.Text =
selectedDrawingView.GetOrientationName();
 ctrTextboxDisplayStyle.Text =
((swDisplayMode_e)selectedDrawingView.GetDisplayMode2()).ToString(
);
 double[] dRatio = (double[])selectedDrawingView.ScaleRatio;
 ctrTextboxScale.Text = dRatio[0].ToString() + "/" +
dRatio[1].ToString();
}

VB

Private Sub DrawingViewSelectionChanged()
 If selectedDrawingView Is Nothing Then Return

 ctrTextboxReferenceFile.Text =
selectedDrawingView.ReferencedDocument.GetPathName()

Development

159

 ctrTextboxReferenceConfig.Text =
selectedDrawingView.ReferencedConfiguration
 ctrTextboxOrientation.Text =
selectedDrawingView.GetOrientationName()
 ctrTextboxDisplayStyle.Text =
selectedDrawingView.GetDisplayMode2().ToString()
 Dim dRatio() As Double = selectedDrawingView.ScaleRatio
 ctrTextboxScale.Text = dRatio(0).ToString() + "/" +
dRatio(1).ToString()
End Sub

Using the SolidWorks View object we pull in the required
information with ease. The ScaleRatio returns an object of 2 doubles
in an array, the first being the numerator and the second the
denominator.

That takes care of the drawing views side of things, but what about
populating the Views combo-box with the views of the current sheet
in the first place? This is handled by the Sheets combo-box and its
functions.

Create a new function called DrawingSheetSelectionChanged
which we will use to handle when the selected sheet name in the
Sheets combo-box changes. Add two more variables to the class to
be used to store the Sheets and Views combo-box item count
(another limitation of the combo-box control). Call these variables
iDrawingViewsCount and iDrawingSheetCount, both of type
integer. Add the following function:

Development

160

C#

private void DrawingSheetSelectionChanged()
{
 FillDrawingViewList();
 ctrNumboxTotalViews.Value = iDrawingViewsCount;
}

VB

Private Sub DrawingSheetSelectionChanged()
 FillDrawingViewList()
 ctrNumboxTotalViews.Value = iDrawingViewsCount
End Sub

The PMP currently reacts when the user selects a View from the
drawing model window. It changes the Views combo-box selected
item and then calls the DrawingViewSelectionChanged function to
update the information. However, you will notice if you run the add-
in now that when the user changes the Views combo-box from the
PMP directly instead of selecting a view then the information will not
get updated. To correct this, and to respond to the change of
selection in the Sheets combo-box at the same time, add the
following to the already existing OnComboboxSelectionChanged
function:

C#

public void OnComboboxSelectionChanged(int Id, int Item)
{
 if (Id == uidComboboxSheets)

Development

161

 {
 ActiveDrawing.ActivateSheet(ctrComboboxSheets.get_ItemText(-
1));
 DrawingSheetSelectionChanged();
 }
 else if (Id == uidComboboxViews)

ActiveModel.Extension.SelectByID2(ctrComboboxViews.get_ItemText(-
1), "DRAWINGVIEW", 0, 0, 0, false, -1, null, 0);
}

VB

Public Sub OnComboboxSelectionChanged(ByVal Id As Integer, ByVal
Item As Integer) Implements
SWPublished.IPropertyManagerPage2Handler6.OnComboboxSelection
Changed
 If Id = uidComboboxSheets Then
 ActiveDrawing.ActivateSheet(ctrComboboxSheets.ItemText(-1))
 DrawingSheetSelectionChanged()
 ElseIf Id = uidComboboxViews Then
 ActiveModel.Extension.SelectByID2(ctrComboboxViews.ItemText(-
1), "DRAWINGVIEW", 0, 0, 0, False, -1, Nothing, 0)
 End If
End Sub

If the Sheets combo-box selection was changed by the user we call
the ActiveDrawings ActivateSheet method and pass in the selected
sheet name, to activate that sheet in the model, and then call the

Development

162

DrawingSheetSelectionChanged function to update the Sheets info
on the PMP, which in turn updates the Views combo-box via the
FillDrawingViewsList function.

If the Views combo-box was altered then we select the View. By
selecting the view using SelectByID2 the event handler hooked into
the ActiveDrawing_NewSelectionNotify gets called, which in turn
updates the view information by calling the
DrawingViewSelectionChanged function, so no need to call in again
here.

The Views group will now be fully working and responding to sheet
changes, view selection and direct changing from the PMP. The
Sheets combo-box will call the function FillDrawingViewsList every
time it is changed, and set the Total Views control text box to the
total view count stored in the variable iDrawingViewsCount. So
once this FillDrawingViewsList function is created, the Sheets group
will also be fully functional:

C#

private void FillDrawingViewList()
{
 object[] views =
(object[])((Sheet)ActiveDrawing.GetCurrentSheet()).GetViews();

 ctrComboboxViews.Clear();
 if (views == null || views.Length == 0)
 return;

 iDrawingViewsCount = views.Length;
 foreach (View v in views)

Development

163

 ctrComboboxViews.AddItems(v.Name);

 ctrComboboxViews.CurrentSelection = 0;
 OnComboboxSelectionChanged(uidComboboxViews,0);
}

VB

Private Sub FillDrawingViewList()
 Dim views() As Object = ActiveDrawing.GetCurrentSheet().GetViews()
 ctrComboboxViews.Clear()
 If views Is Nothing Or views.Length = 0 Then Return

 iDrawingViewsCount = views.Length
 For Each v As View In views
 ctrComboboxViews.AddItems(v.Name)
 Next

 ctrComboboxViews.CurrentSelection = 0
 OnComboboxSelectionChanged(uidComboboxViews, 0)
End Sub

Getting the currently active sheet, and calling the GetViews method
returns an array of View objects if any exist. Looping through each
view we add its name to the Views combo-box of the PMP, and
select the first view from the list.

Because setting the CurrentSelection of a Combobox control of a
PMP programmatically does not call the

Development

164

OnComboboxSelectionChanged function (presumably a bug), we
call it manually after.

All that is left now is to fill the actual Sheets combo-box with the
drawing models sheet names in the first place so that all this can
function. But when would you do this? This is where the
InitialiseInformation comes into play; the 3rd function that gets
called every time the ActiveModelChanged function gets called:

The job of the InitialiseInformation function is to call methods and
set properties for the newly activated model that only need doing so
once, at the beginning. An example is to set the Filename textbox of
the drawing model, as this will not change when the user is selecting
views, adding sketches or deleting sheets etc...

C#

private void InitialiseInformation()
{
 switch (doctype)
 {
 case swDocumentTypes_e.swDocDRAWING:
pmPage.SetMessage3("Select sheets or views to see additional info",
(int)swPropertyManagerPageMessageVisibility.swImportantMessageBox
,
(int)swPropertyManagerPageMessageExpanded.swMessageBoxMaintai
nExpandState, "Drawing Information");

 SetDrawingFilename();
 FillDrawingSheetList();
 break;

Development

165

 case swDocumentTypes_e.swDocPART:
 pmPage.SetMessage3("Select features to show more details",
(int)swPropertyManagerPageMessageVisibility.swImportantMessageBox
,
(int)swPropertyManagerPageMessageExpanded.swMessageBoxMaintai
nExpandState, "Part Information");
 break;

 case swDocumentTypes_e.swDocASSEMBLY:
pmPage.SetMessage3("Select components to see cost information",
(int)swPropertyManagerPageMessageVisibility.swImportantMessageBox
,
(int)swPropertyManagerPageMessageExpanded.swMessageBoxMaintai
nExpandState, "Drawing Information");
 CalculateAssemblyCost();
 break;
 }
}

VB

Private Sub InitialiseInformation()
 Select Case doctype
 Case swDocumentTypes_e.swDocDRAWING
 pmPage.SetMessage3("Select sheets or views to see additional
information",
swPropertyManagerPageMessageVisibility.swImportantMessageBox,
swPropertyManagerPageMessageExpanded.swMessageBoxMaintainEx
pandState, "Drawing Information")

Development

166

 SetDrawingFilename()
 FillDrawingSheetList()
 Case swDocumentTypes_e.swDocPART
 pmPage.SetMessage3("Select features to show more details",
swPropertyManagerPageMessageVisibility.swImportantMessageBox,
swPropertyManagerPageMessageExpanded.swMessageBoxMaintainEx
pandState, "Part Information")
 Case swDocumentTypes_e.swDocASSEMBLY
 pmPage.SetMessage3("Select components to see cost
information",
swPropertyManagerPageMessageVisibility.swImportantMessageBox,
swPropertyManagerPageMessageExpanded.swMessageBoxMaintainEx
pandState, "Drawing Information")
 CalculateAssemblyCost()
 End Select
End Sub

We use this function to set the yellow message box of the PMP with
a message relevant to this type of document from the default of
“Awaiting Initialisation...”

For assemblies we call the CalculateAssemblyCost function to set
the Total Cost value as soon as the assembly is activated, and for
Drawings we call two functions we will now create –
SetDrawingFilename and FillDrawingSheetList:

C#

private void SetDrawingFilename()
{

Development

167

 ctrTextboxFilename.Text =
System.IO.Path.GetFileName(ActiveModel.GetPathName());
}
private void FillDrawingSheetList()
{
 // Fill list
 // Get sheet count to keep track
 iDrawingSheetCount = ActiveDrawing.GetSheetCount();
 ctrComboboxSheets.Clear();
 ctrComboboxSheets.AddItems(ActiveDrawing.GetSheetNames());

 // Select currently active sheet
 SelectComboboxItem(ctrComboboxSheets, iDrawingSheetCount,
((Sheet)ActiveDrawing.GetCurrentSheet()).GetName());
 DrawingSheetSelectionChanged();
}

VB

Private Sub SetDrawingFilename()
 ctrTextboxFilename.Text =
System.IO.Path.GetFileName(ActiveModel.GetPathName())
End Sub
Private Sub FillDrawingSheetList()
 iDrawingSheetCount = ActiveDrawing.GetSheetCount()
 ctrComboboxSheets.Clear()
 ctrComboboxSheets.AddItems(ActiveDrawing.GetSheetNames())
 SelectComboboxItem(ctrComboboxSheets, iDrawingSheetCount,
ActiveDrawing.GetCurrentSheet().GetName())

Development

168

 DrawingSheetSelectionChanged()
End Sub

Setting the filename is self-explanatory. You may like to change this
to display just the filename not the full path, by using
System.IO.Path.GetFilename(ActiveModel.GetPathName())
instead.

Filling the Sheets combo-box with a list of current sheets, and
setting the iDrawingSheetCount variable to the total number of
sheets is done by 2 SolidWorks methods of the DrawingDoc object –
GetSheetCount and GetSheetNames; both return in exactly the
format we require for our variable and combo-box so it is very
simple.

To complete this function we match the Sheets combo-box selected
item with the same sheet that is currently selected in the drawing,
but using our SelectComboboxItem function and passing in the
current sheet name.

And finally to have the entire PMP group update immediately we
add a call to the DrawingSheetSelectionChanged function.

Development

169

Tidy Up
On last note with regards to PMP classes; always clean up after you
do not leave it up to .Net or SolidWorks.

For any variable defined in the class-scope that is of any type from a
SolidWorks library such as Component2, ModelDoc2, SldWorks,
PropertyManagerPageTextbox etc... must be set to null or
Nothing in the AfterClose function.

You are all done. Compile your project and run it to see the results.
Start SolidWorks and open up a Part, Drawing or Assembly (or all 3),
and watch how your PMP automatically appears and stays there,
showing information about the active model instantly and being fully
interactive.

Don’t forget to make your project properties “Register for COM” and
“COM Visible”!

Development

170

You will probably find yourself having to read over this section a few
times to understand the flow of the add-in and how it works, as well
as study the example code provided and the complete project
provided, but with patience and tolerance you will soon come to
grips with the project, and this will in turn open up a whole lot of
possibilities for expanding it into a program of your own.

Development

171

Enhancements
The development stages were designed to give you a firm grounding
into a working add-in that covers all advanced features of a PMP and
event handling, hooks, custom control functions and more. But the
add-in itself still remains in its early stages, and to create a truly
powerful tool you should add enhancements of your own using the
skills and knowledge learned here.

Taking the add-in to the next level here are some suggestions of
improvements that could be fairly easily implemented:

- Create a Settings form.
- Customizing layout order and default page display options

(static, multipage, locked etc...)
- Add more pages for detailed functionality of specific objects.
- Add FileReloadNotify hooks to run your

ActiveModelChanged function correctly when this happens.
- Add FileSaveAsNotify2 function to track new filenames and

update the Filename textbox in the PMP as such.
- Create a TaskPane object instead of a PMP to improve the

layout and robustness of the form.
o Note: Calling the PMP Show2 function with the

StackedPage option caused the page to never
close correctly on 2 of 12 test machines during the
writing of this book. Presumably a bug.

Part Improvements
- Add a new field to show the currently selected Feature

name.
-

Development

172

Assembly Improvements
- Add a ChangeCustomPropertyNotify hook to monitor when

the user changes the Cost custom property and have the
PMP automatically update

- When the “Set Cost” button is clicked, set the cost for the
current component, and then call the “Update Cost” function
automatically to update the new total cost.

- Add a new field to the component/part group to display the
currently selected component and part name.

- Improve the ActiveAssembly_NewSelectionNotify function
to detect Face, Edges and Body selections and then aquire
the relevant ModelDoc2 object from those also.

- Add checks for lightweight components (which will make the
acquisition of the ModelDoc2 from the Component object
fail), and warn the user about this and whether they would
like to resolve the component. If they select yet, resolve it for
them.

- Add checks and restrictions for costing input validation so
the user can only enter valid number information into the
fields.

- The current traversal of the assembly configuration is only
top-level. Improve the CalculateAssemblyCost function to go
multi-level.

- Check for Component Visibility/Suppression state and decide
whether to calculate based on that. Add this decision option
to a Settings form.

- Round up the total cost to decimal places and prefix/append
a currency symbol.

- Add the DP and currency symbol to a Settings form so the
user can specify them.

Development

173

- Add a field to the Settings form for the “Cost” value of the
Assembly Page function.

- When setting a components Cost value, set the model to
Dirty so it tells SolidWorks it needs saving.

Drawing Improvements
- Make the Drawing page View fields such as Orientation,

Referenced File and Config bi-directional so the user can
directly set these values as well as read them.

- Add AddItemNotify and DeleteItemNotify functions to the
drawing model and detect View/Sheet deletion and creation,
and update the combo-box controls as such.

- Add detection of user changing the active sheet and update
the Sheets combo-box to match

A good idea I had during this book but simply could not fit such a
project in, was to expand this add-in to function for every SolidWorks
object that can be selected by the user, and make them all
completely bi-directional; you could add a page for when the user
selects a Base Extrude feature for example that shows the direction,
distance and selected entities so the user would only have to click
the object with the left mouse and see it and be able to edit it
instantly without needing to go into an edit feature state. Imagine
expanding this to all features and beyond? The user would be able to
analyse, read and edit models, components and drawings 10 fold
faster with SWInfo. Take that another step further and add the
option to have a small checkbox constantly visible that disables bi-
directional processing so it just reads info not set it (to improve
speed and performance), then once the user wants to edit the page
just check the box! Get the idea yet? Have a think yourself and see
what you come up with, the potential is definitely there.

174

Methods of Deployment

Manual Installation

SFX Archives

Installation Packages

Creating An Installer

Methods of Deployment

175

You may think that deploying a product has only one or two options,
and it’s just a case of copying a single exe file to the computer it is to
be used on; however, once you get beyond basic programs (as you
have through the course of this book) there are many more stages to
installing a program that just copying a file.

Depending on the needs of your program and the users/machines
the program is aimed at, different deployment methods are
available. As with everything else, choosing the right one is essential
for best practice.

Methods of Deployment

176

Manual Installation
The first method naturally used in the beginning is manual
installation; this involves the user of the computer copying the
required files to the relevant folders, registering library files with the
registration service, adding registry entries and anything else
required.

Sometimes programs can be a single executable file, and in which
case this method would be suitable as no installation is actually
required.

Other times the program has several files, but all located in the same
folder and no other addition requirements like library (dll)
registration, registry entries or the likes, so again this method would
be suitable; creating a single-file archive (.zip, .rar, .exe) using
WinZip, WinRAR or similar, and they distributing this file for the user
to extract to a folder of their choice.

Once programs get more complex or you would like to give a more
professional feel to your release, but the program still needs not any
registrations or registry entries, then the next up on the list is often
what is called an SFX archive.

Methods of Deployment

177

SFX Archives
One step up from manual installations is to create SXF archives (SelF
eXtracting archive); these are archives with an exe extension that the
user can just double-click to run and install your product. SFX
archives are limited in interface, functionality and size.

Using an SFX archive you are able to install files to specific locations
such as program files, start menu, user desktops etc.. or custom
locations, provide a title and description, logo and icon for the
installer, create shortcuts to any file you are installing on the fly, and
password protect them. This is often more than enough for most
basic applications, and even some professional larger scale ones.

The quickest and easiest way to create an SFX archive is to install
and download WinRAR from rarlab.com.

Steps to creating an SFX archive

With WinRAR installed; create a directory somewhere on your
computer. Now, place all the files used by your program, including
the program itself, into this folder. You may include sub-folders if
your program references them as such.

Next select all of the files by either Ctrl+A, or dragging a box around
them so they are highlighted. Right-click any one of the files and
choose “Add to Archive”, to bring up the WinRAR interface with its
default options.

Methods of Deployment

178

What we have here are a lot
of options you need not
concern yourself with for
the creation of an SFX
archive.

Firstly, check the “Create
SFX archive” checkbox to
tell WinRAR we are creating
a self-extracting file. Notice
the filename change from

.rar to .exe.

Give your archive a name by changing the default name to
something more appropriate such as the program name. Remember
to keep the .exe extension intact.

Next click the “Advanced” tab and the SFX Options button to bring
up our SFX options:

Methods of Deployment

179

General
Path to extract - Folder name to
extract selected files to within
the "Program Files" system
folder. You may use \ characters
to denote creating sub-folders
such as shown in the example
image.

Run after extraction - This is the
exact name of the file in your
archive to run immediately after
the program has been installed. If
the file is within a sub-folder

make sure to include that in the name followed by a \ character just
like the path name. This is handy if you would like to run a post-
installation file to finish off some settings, or more commonly to run
your actual program once installed.

Update
Overwrite Mode - Select whether to automatically replace existing
files or to prompt the user to overwrite. For cleanliness I like to select
Overwrite all files as default.

License
If you want you can display a license file for the user to read and
accept first, much like the more professional installation packages.

Text and Icon
Title of SFX Windows - This is simply the title of the installation
window when the user launches it. I like to call this "Program name -
Installation", where "Program name" is your program name.

Methods of Deployment

180

Load SFX logo from file - You can provide a bitmap image approx 90
x 300px in size to be displayed on the left hand side of the program
installation window.

Load SFX icon from file - As well as customising the main window,
you can provide your own windows shell icon to be displayed by the
exe file here.

Advanced
Request administrative access - This is usually best checked in case
the user is restricted from installing the files to the "Program Files"
folder.

Add Shortcut... – Use this to have the SFX archive create shortcuts
for the user in the typical locations such as desktop and program
files:

Where to create – Select the
master destination of the
shortcut to be created; you can
add sub-folders using the
Destination folder option.

Source file name – This is the
exact name (including any sub-
folders) of the file within your
archive that the shortcut should
link to.

Destination folder – This is the
sub-folder(s) to create the

shortcut in from the root folder selected in “Where to create”. Leave
this blank to create it in the root folder directly.

Methods of Deployment

181

Shortcut description – This is the description of the shortcut that
shows up in a tooltip when the user hovers the mouse over it for a
second or two.

Shortcut name – This is the name of the shortcut. This can be
different from the filename and does not require any extensions such
as .exe and is not required to match any filenames in the archive.

Shortcut icon – If you have an icon file (.ico) in your archive that is
being installed you may use that as the icon for the shortcut by
typing in the exact name of the icon file including sub-folders and
filename extension, just like the Source file name option.

You may add as many icons as you like to the archive one at a time.
The most common practise is to create a shortcut for the main
program exe, and one for a help file if it exists.

With all your settings specified click the OK button to close the
advanced options, and then OK again to create your archive file.
WinRAR will do its bit and once complete you will have a new file in
the folder with the name you gave it, showing either the custom icon
defined, or the standard purple books icon of WinRAR.

Double-click the file to run it
and see your SFX archive in
action. This is an example of
one of my products that uses
an SFX archive for its installer.
Test yours out by clicking the
Install button.

Methods of Deployment

182

Installation Packages
Sometimes your program requires more than can be achieved using
simple methods of installation or you just want a more professional
package to give to your users. In that case you start to look at
dedicated installation deployment tools. The most common are as
follows:

- Visual Studio Setup Project
- InstallShield
- InstallAnywhere
- Ghost Installer
- WISE
- NullsoftInstaller (NSIS)
- Setup Factory (IndigoRose)

Each deployment tool has its own company, structure and manual to
help the developers use their software. Whichever package you
choose dictates what methods and procedures you have to follow.
There is no one deployment creation guide that I can give you to
allow you to use all of the above packages, so I will focus on the first;
Visual Studio Setup Project. As well as being free in any Visual
Studio package, it more closely follows the interface we are used to.

If you only have the Express version of Visual Studio, download a trial
version of Professional to get you started.

Methods of Deployment

183

Creating an MSI Installer
What better practise than to create an installer package for our final
project created in the Development chapter?

Begin by creating a new folder to store all of the program files in.
Open up the bin folder of the SWInfo final project, and go into the
Debug or Release folder. In there you will find all of the output files.

Note: To get your add-in registering with COM through a Visual
Studio Setup project you must add the DllInstaller.cs/vb class to
the project first. This class file is provided in the source code files
under changer 7, along with a PDF manual explaining how to
add/implement it. Do this before continuing.

Not all of these are needed
however; pdb files, vshost files
and manifest files are not needed
for any of the projects covered in
this book, so delete them out.

Now copy/paste the remaining
files into the new folder just

created. This will be the folder we reference in our installation
project, and the one we keep up-to-date when we want to update
our installer.

To create a new installation
project, open up Visual Studio
and select File->New-Project.
From there select Other Project
Types->Setup and
Deployment->Setup Project.

Methods of Deployment

184

Change the name from Setup1 to something more desirable. Click
OK to create the project.

The initial screen looks similar to a Visual Studio project, with the
Solution Explorer at the right and the files within it, and the main
window to the left. Before we start to add functionality to our
installer lets clearly define the needs:

- SwInfo requires all files are copied to the same folder so they
can be found for referencing.

- Main dll file must be registered with COM.
- User must accept a license agreement.
- SolidWorks must already be installed.

Installing physical file
The first step as always is to copy the physical files to the installation
folder. To do this go to the main menu bar and select View->Editor-
>File System. This will display the File System main window.

From here you have 3 folders; Application Folder, User’s Desktop and
User’s Programs Menu. As running an installation file requires the
user to be logged onto the machine the installer has information
regarding the user’s desktop and start menu locations. Application
Folder is the folder the user selects to install the program during the
setup wizard.

Let’s install the files to the Application Folder; right-click the
Application Folder icon and select Add->File... Browse to the folder
we created earlier containing all of our programs files. Select the
single dll file of our add-in (called SwInfoCS.dll or SWInfoVB.dll on
in the example files), and click Open. This will add the file to the
project, and you will notice it also adds all other files along with it.

Methods of Deployment

185

The reason it does this is because all of the other files
(solidworkstools.dll, Interop.SWPublished.dll etc...) are all
referenced in our .Net add-in file (added in the References folder of
our add-in VS project), and being integrated into Visual Studio, the
Setup Project automatically detects any dependencies and adds
them also.

That is it for the physical installation of files. You may be wondering
where these files are going to get installed by default as you appear
to have not set any property for that yet.

Select the Application
Folder icon from the
main window, right-click
and select Properties
Windows.

In the properties you can
edit the default

installation folder that is presented to the user (usually Program
Files\Your Program Name) using the Default Location property.

For now the default location will do us. You may notice the location
is using special tags (denoted by the [] brackets), such as
[Manufacturer] and [ProductName]. These are tags specified in the
setup projects properties. This moves us on to the setup projects
properties.

Setup Project Properties
To access them right-click the project item in the Solution Explorer
(second item down) and select Properties. Here you will find a list of
all attributes of our setup project that helps Windows identify the
product, manufacturer, version, author and other information that

Methods of Deployment

186

can further be used to display information in the Programs &
Features/Add-Remove Programs list when selecting to install,
remove or modify the installation.

Version information can be used for licensing and upgrading.

Author – Specifies the Author
of the product; shows in
standard file information
summary of Windows.

Description – Specifies the
product description; shows in
standard file information
summary of Windows, and in
Add/Remove programs.

DetectNewerInstalledVersion
– This tell the installer to look
for installed products of the
same ProductCode (unique ID),
and compare their version with
this version. If a higher version
is installed, or one of the same
verison, setup terminates.

InstallAllUsers – Specifies
whether the product is installed for all users; ignore this setting for
our purpose.

Keywords – Helps in indexing, searching and the likes; shows in
Add/Remove programs.

Methods of Deployment

187

Localization – This is not used until a much more advanced level not
covered in this book.

Manufacturer – Specifies the products Manufacturer and by default
used as part of the installation folder name; shows in Add/Remove
programs.

ManufacturerUrl – Specifies the manufacturers’ website; shows in
Add/Remove programs.

PostBuildEvent/PreBuildEvent – Runs custom commands created
in the MSI.

ProductCode – This is an automatically generated code on creation
of a new VS Setup Project that identifies the product. Every time you
create a new version this number should change, that way upgrades
and already installed versions can be detected and function
correctly.

ProductName – Specifies the products name and by default used as
part of the installation folder name; shows in standard file
information summary of Windows, and in Add/Remove programs.

RemovePreviousVersions – If your installer detects a product
already installed with the same ProductCode, and the version is
earlier than the current version, and this option is true then the old
version automatically gets removed before this one is installed.

 RunPostBuildEvents – Determines whether to run post build
command scripts all the time, or only on successful installation.

SearchPath – Specifies custom folders to search for file
dependencies (like the solidworkstools.dll that it found earlier) if
Visual Studio fails to find them by default.

Methods of Deployment

188

Subject/SupportPhone/SupportUrl – Another product description
tag; shows in standard file information summary of Windows, and
some in Add/Remove programs.

TargetPlatform – Specifies whether to create a 32bit or 64bit or
Itanium msi installer. You can create a 64bit installer that installs
32bit files. All this property defines is what registry and folders the
installer accesses by default; 32bit or 64bit. The target platform
should match the programs platform.

Title – Specifies the installers’ title that is displayed in the main
windows of the installer; shows in standard file information summary
of Windows, and in Add/Remove programs.

UpgradeCode – – This is an automatically generated code on
creation of a new VS Setup Project that identifies the product
uniquely. Every time you create a new version of the product make
sure this ID matches for every installer, that way upgrades and
already installed versions can be detected and function correctly.

Version – Specifies the installers version used for
upgrading/adding/removing etc... This is not the same as the
programs version number specified in the assembly information of
the Visual Studio Project of the files you are installing.

Don’t get overwhelmed by the number of properties here; you only
need concern yourself with a select few for your needs:

- Author
- Description
- Manufacturer

Methods of Deployment

189

- ProductName
- Title
- Version

Fill in each of the fields with your own information.

That covers step one of the requirements; next – COM registration:

COM registration
If you browse around the file properties for the main SwInfo dll file
from the File System view you will come across a property called
“Register” with an option for “vsdraCOM”. At first you would
presume this is all that is needed to register our program for COM,
and effectively run our add-ins COM Registration functions.

The first is correct this function will register our add-in to COM, so it
is accessible as a COM object (so change the property to vsdraCOM
while you are here), but it will not take care of the second
requirement to run the add-ins COM registration functions and
thereby add the registry entries to the SolidWorks registry hive.

Running custom COM functions
Although it sounds rather daunting and complicated, getting the
installer to run custom COM actions is even easier than adding files
to the project, thanks to a little installer class I have provided in the
example files. To save space in the book I have provided a small
document along with the class to describe how to add it to your add-
in project, it takes no more than 5 minutes. Find these files in the
chapter 7 folder.

With the custom installer class included in your add-in project and it
has been compiled and updated (by replacing the existing file in the
folder we are using to store our installation files, the ones we added

Methods of Deployment

190

to the Application Folder), Open up the Custom Actions window
from View->Editor->Custom Actions. Here you are presented with 4
folders. For the Install, Rollback and Uninstall folders do the
following:

- Right-click folder, select Add Custom Action...
- Browse to Application Folder, and select SwInfo.dll file
- Click OK
- Press Enter to accept default name

That is it! The add-ins custom COM functions will now run
automatically thanks to the custom DllInstaller class.

The custom functions play the role of using .Net to find out where
the regasm.exe file is located on the clients machine, and then
calling that file to register our dll with it.

Methods of Deployment

191

License Agreement
You have come this far to create a professional installation package
and what would it be without a license agreement.

With a license agreement to hand, save it to RTF format using
Microsoft Word or similar and then add it to the Application Folder.

Open the User Interface form from View->Editor->User Interface.
Select the License Agreement item, right-click and select
Properties Window. Browse for the RTF license file and add it.

Now the user will be displayed the license file
and must click and Accept button before
he/she can proceed with the installation.

Detecting SolidWorks installation
Although not strictly required another improvement to the
installation would be to detect whether or not SolidWorks is installed
on the users machine. To do this requires 2 steps:

Step 1 – Detecting SolidWorks

In order to detect whether or not SolidWorks is installed on a users
machine the installer needs to find some key data or file on the
machine that SolidWorks places there when installed. There are
several options including the detection of a SLDWORKS.exe file,
license protocols in the Windows Protected storage, or registry data.

Methods of Deployment

192

The problem with the first two is they tend to have many variations
in security to access or find the files; they may have been customised
or changed, or obscured in some way. The last method is the
simplest and most robust, and that is to detect the presence of a
SolidWorks folder in the windows registry; if it is there, chances are
SolidWorks is installed.

Go to the Launch Conditions window from View->Editor->Launch
Conditions. Have the installer search the Local Machine registry in
the Software\SolidWorks hive by doing the following:

- Right-click the Search Target Machine folder and select Add
Registry Search. Name this “Search for SolidWorks”:

- In the properties window for “Search for SolidWorks”, set the

RegKey property to Software\SolidWorks. The Root is
already Local Machine, and the Property is just a name that
we can reference later so leave those as standard:

Methods of Deployment

193

The installer will check for the existence of a folder called
SolidWorks in the HKLM\Software hive, and if it is found set the
property (called REGISTRYVALUE1 by default).

Step 2 – Checking Condition

The last thing to do is to check this REGISTRYVALUE1 and if it is not
set then do not allow installation to continue as SolidWorks is not
installed.

- Right-click the Launch Conditions folder and select the “Add
Launch Condition” item to add a condition.

- Name the condition “SolidWorks Installed”.
- In the properties window of the “SolidWorks Installed”:

o Set Condition to: REGISTRYVALUE1 != “”
o Set Message to: “Setup requires SolidWorks to be

installed before it can continue. Setup will now exit.

You have now completed all the required steps to creating a
software installation package for your SolidWorks Add-in program.

To compile the program specify the correct platform from the
TargetPlatform property of the project (x86 = 32bit, x64 = 64bit),
then select Build->Build Solution from the menu, or press F6.

Methods of Deployment

194

Once compiled you will have 2 files in the setup projects output
folder called Setup.exe and ProjectName.msi (where project name
is your projects name).

The setup.exe file is responsible for detecting whether the Windows
Installer 2.0 package is installed on the operating system (as without
it Windows is incapable of running the .msi file). If it is then it runs
the .msi file automatically, else displays an error message to the user
telling them to install the required update to Windows.

Run your installation package and try it out for yourself.

Methods of Deployment

195

Creating An Installer
If an SFX archive or manual install are too basic for your needs, but a
dedicated installation deployment tool is just overkill, or not bespoke
enough to suite your exact needs, then there is still a third option –
write your own installation package. Yes, write your own; that is
exactly what we are going to do now!

I personally find that most companies or developers tend to put
across the impression that installation deployment is this big
complex mystery or that it is a very hard thing to do. I have never
understood this view as I think it is no more difficult than writing a
SolidWorks Add-in, if not easier, and so for that reason I will now
take you through creating a totally customised installation program
that will do the job of installing our add-in for us.

The installer will do the following:

- Provide the user with an installer interface
- Allow selecting an installation folder
- Allow creation of Desktop/Start Menu shortcuts
- Come as a single .exe file ready to run
- Embed all installation files directly into its own file
- Register the add-in with no need for the custom installer

class to be added to the add-in project
- Provide a log of installation progress

As well as doing all the above requirements you will then have a
framework that you can easily build upon afterwards, with all the
power of a .Net program at your disposal.

Methods of Deployment

196

To begin with create a new Visual Studio Windows project. Call it
SWInfoCustomInstaller or similar. On the main form add the
following items, given then the names and properties defined, and
align them to however you like. Here is an example of my layout:

Type Name Text
Label lTitle SWInfo Custom Installer
Label lDescription Welcome to the custom...
Label lWarning * Please make sure SolidW...
Label lFolder Installation Folder:
TextBox tbFolder
Button bFolderBrowse ...
CheckBox cbCreateStartMenu Create Start Menu Shortcut
CheckBox cbCreateDesktop Create Desktop Shortcut
Button bInstall Install
TextBox tbLog

Methods of Deployment

197

Change the Main Form properties as follows:

• AcceptButton ... bInstall
• FormBorderStyle FixedToolWindow
• MaximizeBox .. False
• MinimizeBox .. False
• StartPosition .. CenterScreen
• Text .. SWInfo Custom Installer

Change the tbLog properties as follows:

• ReadOnly .. true
• ScrollBars ... Vertical
• Multiline .. True

References
Required later is a reference to the Windows Script Host Object file;
click Project->Add Reference... select the COM tab and add the
“Windows Script Host Object” as a reference.

In the using/Imports block, add the following references that will be
required for this project:

C#

using System.IO;
using System.Reflection;
using System.Collections;
using IWshRuntimeLibrary;

Methods of Deployment

198

VB

Imports System.IO
Imports System.Reflection
Imports System.Collections
Imports IWshRuntimeLibrary

The System.IO is used for reading and writing files, the
System.Reflection is used to pull the embedded files from our .exe
file, the System.Collections is for creating a Hashtable array used to
store shortcut information, and the IWshRuntimeLibrary is just a
reference to the Windows Script Host file we added just that is
needed to create shortcut files.

Variables
Next create some variables to be used:

C#

Assembly asmMe;
AssemblyName nameMe;
List<string> filesToInstall;
List<string> filesToRegister;
Hashtable filesToShortcut;
string regasmPath;
string sDesktop;
string sStartMenu;
string sProgramFiles;

Methods of Deployment

199

VB

Dim asmMe As Assembly
Dim nameMe As AssemblyName
Dim filesToInstall As List(Of String)
Dim filesToRegister As List(Of String)
Dim filesToShortcut As Hashtable
Dim regasmPath As String
Dim sDesktop As String
Dim sStartMenu As String
Dim sProgramFiles As String

The Assembly and AssemblyName variables will contain
information about the .exe file itself so we can extract the embedded
files to install. The filesTo* variables are customisable lists of the
filenames to install, register with COM, and to create shortcuts of, so
you can easily change the installer to suit any project by changing
these 3 lists of names!

The other variables we will come to later.

Embedding Installation Files
As we want this installer to be a single distributable file like most
other installers we need a way to embed the files that are to be
installed on the clients’ machine directly within our installer project.

To do this we could create an installer program, and reference files
externally that are for example in the same folder as the installer
(this is done on large installers like SolidWorks for example). But for
our smaller, simpler installer it would be neater easier to distribute
being in a single file.

Methods of Deployment

200

Create a new folder in our project by going to Project->New Folder.
Call the folder “Contents”.

Right-click the Contents folder
and select Add Existing Items...

Now select the files you wish to
install. In our case we are going
to install the product we
developing in the development
section (SWInfo), so browse to

the SWInfo project bin folder and select all of the required files
(.vshost, .manifest and .pdb files are temporary files and do not need
to be included).

If the files do not show make sure you have the “All Files (*.*)”
selected in the file type.

Once the files have been
added to the Contents folder,
we need to make them
embedded resources so that
they are actually compiled
into our main .exe file instead
of just copied to the output
directory.

To do this select each file from the Solutions Explorer and then in the
Properties windows change the Build Action to Embedded
Resource.

If you browse to the Visual Studio projects folder for this project now
(usually My Documents\Visual Studio 2008\Projects) you will notice a

Methods of Deployment

201

new folder within their called “Contents”, and in that folder are the
files we added. Whenever you want to update the installation files,
say if you are releasing a new version, there is no need to re-add the
files using Visual Studio. Instead just replace the files in this Contents
folder with the newer files using the normal Windows Explorer and
Copy/Paste method. The files in this folder are added to the main
.exe every time you compile the installer project.

Event Handlers
Now you have the layout sorted, and the installation files embedded,
it’s time to add some event handlers for functionality.

At the main forms visual design interface, double-click the title bar of
the form to add an event handler to the OnLoad event of the form.
Switch back to the form view and double-click the Browse button
(...) and the Install button to add two more events.

In the code view, for these 3 event handlers, add some blank
functions like so:

C#

private void Form1_Load(object sender, EventArgs e)
{
 InitialSetup();
}
private void bInstall_Click(object sender, EventArgs e)
{
 StartInstall();
}
private void bFolderBrowse_Click(object sender, EventArgs e)
{

Methods of Deployment

202

 BrowseFolder();
}

VB

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 InitialSetup()
End Sub

Private Sub bFolderBrowse_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bFolderBrowse.Click
 BrowseFolder()
End Sub

Private Sub bInstall_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles bInstall.Click
 StartInstall()
End Sub

The reason we create functions like this instead of placing code
directly into event handlers is so that we can easily separate
functionality and coding, from program operation and code flow; say
you changed the form so that instead of having a button to install,
you have a menu item, or even both. If you are calling a single
function in the event handler you only need to add another call to
that function to the menu item also. If the code was placed directly
within the buttons’ event handler then you cannot do that.

Methods of Deployment

203

Here are the 3 main functions of our program.

InitialSetup
This function will declare all of the information required to start a
new installation, such as getting the current users special folders
(Desktop, Start Menu, Program Files), setting the default installation
folder, finding the location of the regasm.exe file needed for
registering libraries, and also declaring what files are to be installed,
links and registered for this installation.

BrowseFolder
This is a very simple function; it displays a folder browser dialog to
the user to select a folder where they would like to install the
program.

StartInstall
This is the main function responsible for starting a new installation.

As the form loads the InitialSetup function is called first to gather
the required information before anything else can be done. From
there the user is presented with the installation main form where
they can browse for a folder, select whether to create shortcuts or
not, and then click the Install button.

Start with the InitialSetup function; create a new function called
InitialSetup (Sub in VB):

C#

private void InitialSetup()
{
 // Get the location of regasm

Methods of Deployment

204

 regasmPath =
System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirec
tory() + @"regasm.exe";

 // Define list of files to install
 filesToInstall = new List<string>();
 filesToInstall.Add("readme.txt");
 filesToInstall.Add("Interop.SldWorks.dll");
 filesToInstall.Add("Interop.SwCommands.dll");
 filesToInstall.Add("Interop.SwConst.dll");
 filesToInstall.Add("Interop.SWPublished.dll");
 filesToInstall.Add("solidworkstools.dll");
 filesToInstall.Add("SWInfoCS.dll");
 filesToInstall.Add("SWInfoCS.tlb");

 // Define list of files to register
 filesToRegister = new List<string>();
 filesToRegister.Add("SWInfoCS.dll");

 // Define list of files to create shortcuts for
 // Key = filename / Value = shortcut name
 filesToShortcut = new Hashtable();
 filesToShortcut.Add("readme.txt", "SWInfo Readme");

 // Get current users special folders
 // - Desktop
 sDesktop =
System.Environment.GetFolderPath(Environment.SpecialFolder.Desktop
Directory);

Methods of Deployment

205

 // - Start Menu \ Programs
 sStartMenu =
System.Environment.GetFolderPath(Environment.SpecialFolder.Progra
ms);
 // - Program Files
 sProgramFiles =
System.Environment.GetFolderPath(Environment.SpecialFolder.Progra
mFiles);

 // Set default installation folder to Program Files\AngelSix\SWInfo
 tbFolder.Text = Path.Combine(sProgramFiles, @"AngelSix\SWInfo");
}

VB

Private Sub InitialSetup()
 ' Get the location of regasm
 regasmPath =
System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirec
tory() + "regasm.exe"

 ' Define list of files to install
 filesToInstall = New List(Of String)
 filesToInstall.Add("readme.txt")
 filesToInstall.Add("Interop.SldWorks.dll")
 filesToInstall.Add("Interop.SwCommands.dll")
 filesToInstall.Add("Interop.SwConst.dll")
 filesToInstall.Add("Interop.SWPublished.dll")
 filesToInstall.Add("solidworkstools.dll")

Methods of Deployment

206

 filesToInstall.Add("SWInfoCS.dll")
 filesToInstall.Add("SWInfoCS.tlb")

 ' Define list of files to register
 filesToRegister = New List(Of String)
 filesToRegister.Add("SWInfoCS.dll")

 ' Define list of files to create shortcuts for
 ' Key = filename / Value = shortcut name
 filesToShortcut = New Hashtable()
 filesToShortcut.Add("readme.txt", "SWInfo Readme")

 ' Get current users special folders
 ' - Desktop
 sDesktop =
System.Environment.GetFolderPath(Environment.SpecialFolder.Desktop
Directory)
 ' - Start Menu \ Programs
 sStartMenu =
System.Environment.GetFolderPath(Environment.SpecialFolder.Progra
ms)
 ' - Program Files
 sProgramFiles =
System.Environment.GetFolderPath(Environment.SpecialFolder.Progra
mFiles)

 ' Set default installation folder to Program Files\AngelSix\SWInfo
 tbFolder.Text = Path.Combine(sProgramFiles, "AngelSix\SWInfo")

Methods of Deployment

207

End Sub

We start by finding out the location of the regasm.exe tool that gets
installed with all versions of the .Net framework. This tool is used to
register our .Net add-in so it works with SolidWorks. The
GetRuntimeDirectory is the location of the .Net framework
installation, typically C:\Windows\Microsoft.NET\Framework\v?.?\.
Then within that folder is the regasm.exe file we need.

Next we create a new array of strings for files to install and files to
register (with regasm.exe). These strings reference the exact
filenames of files we have added to the Contents folder earlier, so
make sure you match them exactly.

Note that there is an additional file I have added (both to the string
array and to the actual Contents folder) called “readme.txt”. This is
just a text file where you can write some instructions to the user
about the SWInfo add-in and how to use it; if we didn’t have a text
file then once the add-in was installed, the user would have no
shortcuts or indication of what is installed on the system as a dll file
cannot be opened directly so it is nice to place a read me file on there
too so they have some indication. Feel free to add any type of
additional files you like to the installer.

We want to install all files so we add them all to the filesToInstall
array. The only file that needs registering is the add-in itself – in this
case SwInfoCS.dll/SwInfoVB.dll.

The filesToShortcut variable is a Hashtable; this is just a 2-
dimensional array instead of a single dimension string array, as we
need to store information about the filename to add a shortcut to as

Methods of Deployment

208

well as a name for the shortcut so a Hashtable is ideal as it links
these pairs of strings to each other. The only item we add a shortcut
to is the readme.txt file, and we call the shortcut “SWInfo Readme”.

The next 3 lines use the .Net GetFolderPath function to get special
information about the current user. As we give the user the option to
place a shortcut on the desktop, and start menu, and want the
default installation to go to the Program Files folder, we gather
those 3 pieces of information.

The last line sets the installation folders text box to the program files
location and a sub-folder called AngelSix, followed by another sub-
folder called SwInfo so by default the files would be installed to
“C:\Program Files\AngelSix\SwInfo”.

Selecting an Installation Folder
In common installation programs the user has the ability to select a
folder to install the program to instead of the default location.
Although the user can manually type in the folder location to the
installation folder text box, it is not common and much more user
friendly to display them with the standard Windows Folder Browser
interface.

We have already setup an event handler that calls a function called
BrowseFolder when the browse button (...) is clicked by the user:

C#

private void BrowseFolder()
{
 FolderBrowserDialog fb = new FolderBrowserDialog();

Methods of Deployment

209

 fb.Description = "Select installation folder";
 fb.SelectedPath = tbFolder.Text;
 fb.ShowNewFolderButton = true;
 if (fb.ShowDialog(this) == DialogResult.OK)
 tbFolder.Text = fb.SelectedPath;

 fb.Dispose();
}

VB

Private Sub BrowseFolder()
 Dim fb As FolderBrowserDialog = New FolderBrowserDialog()
 fb.Description = "Select installation folder"
 fb.SelectedPath = tbFolder.Text
 fb.ShowNewFolderButton = True

 If fb.ShowDialog(Me) = DialogResult.OK Then tbFolder.Text =
fb.SelectedPath

 fb.Dispose()
End Sub

Not much to explain here; creating a new instance of the
FolderBrowser dialog and calling its ShowDialog function is strictly
all that is needed to show the user a standard folder browser where
they can select a folder and click an OK or Cancel button.

We set a description that appears in the title, and set the starting
folder of the browser to the current folder that is already selected in

Methods of Deployment

210

the text box before showing it to the user. From there we check if the
user clicked the OK button by analysing the DialogResult return
from the ShowDialog function, and if it is OK then set the
installation folder text box value to the folder the user selected.

Next the user could check/uncheck the options for creating
shortcuts. No action is taken here until the installation starts, so the
only function that can be called next in the program flow is to close
the program or to click the Install button which calls the StartInstall
function.

Starting the Installation Process
As with any installation program it is nice if the user is kept informed
of the progress throughout the installation; to display information
about the installation stages to the user we add text to the tbLog
text box. It’s always nice and tidy to have a simple function called
Log() that handles adding messages to a log system.

All that our log function needs to do is take a string as an input, and
add it to the log text box on a new line, scrolling to the next line as it
goes to keep the latest message always in view. This is done like so:

C#

private void Log(string message)
{
 tbLog.Text += DateTime.Now.ToShortTimeString() + ": " + message +
Environment.NewLine;
 tbLog.SelectionStart = tbLog.Text.Length - 1;
 tbLog.ScrollToCaret();
}

Methods of Deployment

211

VB

Private Sub Log(ByVal message As String)
 tbLog.Text += DateTime.Now.ToShortTimeString() + ": " + message +
Environment.NewLine
 tbLog.SelectionStart = tbLog.Text.Length - 1
 tbLog.ScrollToCaret()
End Sub

We also prefix the current system time to each message.

Before an installation starts it is also best practise to disable any user
interface items such as buttons and checkboxes that should not be
interactive once the process starts.

For example you would not want the user clicking the Install button
again once the process is half way though, calling the StartInstall
function all over again mid-process, or changing other options.

To handle this we create effectively 2 “states” if you like; one with all
items enabled, and the other with them disabled.

C#

private void ToggleState(bool enabled)
{
 tbFolder.Enabled = bFolderBrowse.Enabled =
cbCreateDesktop.Enabled = cbCreateStartMenu.Enabled =
bInstall.Enabled = enabled;
}

Methods of Deployment

212

VB

Private Sub ToggleState(ByVal enabled As Boolean)
 tbFolder.Enabled = bFolderBrowse.Enabled =
cbCreateDesktop.Enabled = cbCreateStartMenu.Enabled =
bInstall.Enabled = enabled
End Sub

When the user clicks the button we start a new installation, clear the
log, toggle the state to disabled, and begin an install.

Upon failure we log a failure message, and upon success we log a
success message. Once done we toggle the state back to enabled:

C#

private void StartInstall()
{
 // Clear log
 tbLog.Text = "";
 ToggleState(false);
 if (Install())
 Log("Installation complete.");
 else
 Log("Installation cancelled.");

 ToggleState(true);
}

Methods of Deployment

213

VB

Private Sub StartInstall()
 ' Clear log
 tbLog.Text = ""
 ToggleState(False)
 If (Install()) Then
 Log("Installation complete.")
 Else
 Log("Installation cancelled.")
 End If
 ToggleState(True)
End Sub

Within the StartInstall function we call a main Install function (to be
created next) that returns a Boolean result for success or failure,
which we respond to correctly with a log message.

The Installation Stages
Within the Install function is where all of the code so far has led us,
and where all the magic happens. Hold on to your seats you are
almost there; the entire program comes together now almost
instantly within this one fairly small function.

C#

private bool Install()
{
 // Get self
 asmMe = Assembly.GetExecutingAssembly();
 nameMe = asmMe.GetName();

Methods of Deployment

214

 #region Create installation folder
 string installDest = tbFolder.Text;
 try { Directory.CreateDirectory(installDest); }
 catch
 {
 Log("Error creating installation directory " + installDest);
 return false;
 }
 #endregion Create installation folder
 // Install files
 foreach (string file in filesToInstall)
 if (!InstallFile(file, installDest))
 return false;

 // Register files
 foreach (string file in filesToRegister)
 if (!RegisterFile(Path.Combine(installDest, file)))
 return false;

 // Create shortcuts
 if (cbCreateDesktop.Checked || cbCreateStartMenu.Checked)
 {
 foreach (DictionaryEntry entry in filesToShortcut)
 {
 string shortcutFile = (string)entry.Key;
 string shortcutDesc = (string)entry.Value;

 // Create desktop shortcut
 if (cbCreateDesktop.Checked)

Methods of Deployment

215

 if (!CreateShortcut(Path.Combine(installDest, shortcutFile),
sDesktop, shortcutDesc))
 return false;

 // Create start menu shortcut
 if (cbCreateStartMenu.Checked)
 if (!CreateShortcut(Path.Combine(installDest, shortcutFile),
sStartMenu, shortcutDesc))
 return false;
 }
 }
 return true; // All done :)
}

VB

Private Function Install() As Boolean
 ' Get self
 asmMe = Assembly.GetExecutingAssembly()
 nameMe = asmMe.GetName()

 ' "Create installation folder"
 Dim installDest As String = tbFolder.Text
 Try
 Directory.CreateDirectory(installDest)
 Catch
 Log("Error creating installation directory " + installDest)
 Return False
 End Try

Methods of Deployment

216

 ' Install files
 For Each file As String In filesToInstall
 If Not InstallFile(file, installDest) Then Return False
 Next

 ' Register files
 For Each file As String In filesToRegister
 If Not RegisterFile(Path.Combine(installDest, file)) Then Return
False
 Next

 ' Create shortcuts
 If (cbCreateDesktop.Checked Or cbCreateStartMenu.Checked) Then
 For Each entry As DictionaryEntry In filesToShortcut
 Dim shortcutFile As String = entry.Key
 Dim shortcutDesc As String = entry.Value

 ' Create desktop shortcut
 If cbCreateDesktop.Checked Then
 If Not CreateShortcut(Path.Combine(installDest, shortcutFile),
sDesktop, shortcutDesc) Then Return False
 End If

 ' Create start menu shortcut
 If cbCreateStartMenu.Checked Then
 If Not CreateShortcut(Path.Combine(installDest, shortcutFile),
sStartMenu, shortcutDesc) Then Return False
 End If

Methods of Deployment

217

 Next
 End If

 ' All done :)
 Return True

End Function

The GetExecutingAssembly function gets a handle to the actual
program itself from where this function is called. We need this so
that we can get information about its name and to extract the
installation files embedded within it.

Next we get the directory the user specified for installation, and call
the CreateDirectory function to create it if it doesn’t already exist. If
the user does not have permission to create a folder in that location
the program will catch the error and display the relevant log
message, then return from the installation immediately with a false
return value to indicate failure.

If the folder is successfully created we move on to looping all files in
the filesToInstall list we populated in the InitialSetup function, and
in turn call an InstallFile function for each item.

The same again for the filesToRegister list, only this time called
another function; RegisterFile.

And thirdly, if the user has specified to create shortcuts, loop each
item in the filesToShortcut hash table and call a function
CreateShortcut.

Methods of Deployment

218

That is it – If all of those processes succeed the installation was a
success so we return true.

The Key Functions
To give you a better idea of the program flow at this stage before
finishing it off with the hardcore functions, create the remaining
functions (InstallFile, RegisterFile and CreateShortcut), and add a
single line to display a message to the user stating what “should
happen”.

C#

private bool InstallFile(string embeddedFile, string destination)
{
 MessageBox.Show(“Installing embedded “ + embeddedFile + “ to “ +
destination);
 return true;
}
private bool RegisterFile(string file)
{
 MessageBox.Show(“Registering + file);
 return true;
}
private bool CreateShortcut(string filename, string shortcutLocation,
string shortcutName)
{
 MessageBox.Show(“Creating shortcut called “ + shortcutName + “ in
the following folder “ + shortcutLocation + “ linking to “ + filename);
 return true;
}

Methods of Deployment

219

VB

Private Function InstallFile(ByVal embeddedFile As String, ByVal
destination As String) As Boolean
MessageBox.Show(“Installing embedded “ + embeddedFile + “ to “ +
destination)
Return True
End Function

Private Function RegisterFile(ByVal file As String) As Boolean
MessageBox.Show(“Registering + file)
Return True
End Function

Private Function CreateShortcut(ByVal filename As String, ByVal
shortcutLocation As String, ByVal shortcutName As String) As Boolean
 MessageBox.Show(“Creating shortcut called “ + shortcutName + “ in
the following folder “ + shortcutLocation + “ linking to “ + filename)
Return True
End Function

Now compile and run your project, specify an installation folder and
to create shortcuts or not, and click the Install button. Watch how
the log box gets updated once complete, and how the selected
installation folder gets created, and messages appear about
installing, registering and creating shortcuts.

Methods of Deployment

220

Testing at this stage is
always a good idea in a
program as it displays
whether the program is
flowing right in the first
place, if events are firing at
the right time and if it is
generally behaving as
expected.

Once the former is ascertained we can move on to the functions that
do the real work for us and finish off the project. We need to extract
the embedded files and install them to the installation folder,
register a file using the regasm.exe, and create windows shortcuts
using the Windows Script Host object.

RegisterFile
Starting with the shortest function first; to register an assembly
takes but one call to regasm.exe. As we already found the
regasm.exe file location previously and stored it in the regasmPath
variable, all that is left is to call it and pass in the argument
/codebase and the location of the assembly (our add-in dll).

C#

private bool RegisterFile(string file)
{
 Log("Registering " + file + "...");
 try

Methods of Deployment

221

 {
 // Execute regasm
 System.Diagnostics.Process.Start(regasmPath, "/codebase \"" + file
+ "\"");
 }
 catch
 {
 Log("Failed to register " + file);
 return false;
 }
 return true;
}

VB

Private Function RegisterFile(ByVal file As String) As Boolean
 Log("Registering " + file + "...")
 Try
 ' Execute regasm
 System.Diagnostics.Process.Start(regasmPath, "/codebase """ + file
+ """")
 Catch e As Exception
 Log("Failed to register " + file)
 Return False
 End Try

 Return True
End Function

Methods of Deployment

222

We passed in the filename of our add-in from the Install function.
Running Process.Start() with the regasm.exe filename, and passing
in the argument “/codename assemblyname” does the trick of
registering the specified file.

CreateShortcut
Next on the list is the create shortcut function; again very simple
once you know how. Using the Windows Script Hosting class

C#

private bool CreateShortcut(string filename, string shortcutLocation,
string shortcutName)
{
 Log("Creating shortcut to " + Path.GetFileName(filename) + "...");
 try
 {
 // Create a new instance of WshShellClass
 WshShell shell = new WshShellClass();

 // Create the shortcut
 IWshRuntimeLibrary.IWshShortcut shortcut =
(IWshRuntimeLibrary.IWshShortcut)shell.CreateShortcut(Path.Combine(
shortcutLocation, shortcutName + ".lnk"));

 // Where the shortcut should point to
 shortcut.TargetPath = filename;

 // Description for the shortcut
 shortcut.Description = shortcutName;

Methods of Deployment

223

 // Create the shortcut at the given path
 shortcut.Save();
 }
 catch
 {
 Log("Error creating shortcut for " + filename);
 return false;
 }

 return true;
}

VB

Private Function CreateShortcut(ByVal filename As String, ByVal
shortcutLocation As String, ByVal shortcutName As String) As Boolean
 Log("Creating shortcut to " + Path.GetFileName(filename) + "...")

 Try
 ' Create a new instance of WshShellClass
 Dim shell As WshShell = New WshShellClass()

 ' Create the shortcut
 Dim shortcut As IWshRuntimeLibrary.IWshShortcut =
shell.CreateShortcut(Path.Combine(shortcutLocation, shortcutName +
".lnk"))

 ' Where the shortcut should point to
 shortcut.TargetPath = filename

Methods of Deployment

224

 ' Description for the shortcut
 shortcut.Description = shortcutName

 ' Create the shortcut at the given path
 shortcut.Save()
 Catch
 Log("Error creating shortcut for " + filename)
 Return False
 End Try

 Return True
End Function

Creating a new shortcut we create a new instance of the shell object
itself and call the function CreateShortcut with the name we wish to
give it, followed by the extension “.lnk” which is the hidden
extension of shortcuts.

From there we have access to a shortcut object that we can set the
properties of, and save using the Save function.

InstallFile
Finally the last leg of the program, the most complicated part you
will come across, is the InstallFile function. No not worry too much if
you do not understand this function, just to know how to use it and
to know it works is enough. Its function is plain – to extract the files
we embedded into our assembly, back out and into the installation
folder.

Methods of Deployment

225

The embedded resource is retrieved to a Stream object using a
function from the assembly object called
GetManifestResourceStream; really you can think of this function
as being called GetEmbeddedFileAsStream.

From that Stream object, we read its data, and write it back out to
another file in the installation folder, effectively “copying” it to the
installation folder. I will not explain the inner workings of this
function for this purpose, but if you wish to fully understand it feel
free to email me or use the AngelSix forums.

C#

private bool InstallFile(string embeddedFile, string destination)
{
 Log("Installing " + embeddedFile + "...");

 Stream s;
 try
 {
 s = asmMe.GetManifestResourceStream(nameMe.Name +
".Contents." + embeddedFile);
 if (s == null)
 throw new NullReferenceException();
 }
 catch
 {
 Log("Error: Corrupt " + embeddedFile + " in installer.");
 return false;
 }

Methods of Deployment

226

 try
 {
 using (FileStream newstream = new
FileStream(Path.Combine(destination, embeddedFile),
FileMode.Create))
 {
 byte[] buffer = new byte[32768];
 int chunkLength;
 while ((chunkLength = s.Read(buffer, 0, buffer.Length)) > 0)
 newstream.Write(buffer, 0, chunkLength);
 }

 s.Close();

 }
 catch
 {
 Log("Error: Error copying " + embeddedFile + " to " + destination);
 return false;
 }

 Log("Installed " + embeddedFile);

 return true;
}

Methods of Deployment

227

VB

Private Function InstallFile(ByVal embeddedFile As String, ByVal
destination As String) As Boolean
 Log("Installing " + embeddedFile + "...")

 Dim s As Stream
 Try
 s = asmMe.GetManifestResourceStream(nameMe.Name + "." +
embeddedFile)
 If s Is Nothing Then Throw New NullReferenceException()
 Catch
 Log("Error: Corrupt " + embeddedFile + " in installer.")
 Return False
 End Try

 Try

 Using newstream As FileStream = New
FileStream(Path.Combine(destination, embeddedFile), FileMode.Create)
 Dim buffer(32768) As Byte

 Dim chunkLength As Integer = s.Read(buffer, 0, buffer.Length)
 While (chunkLength > 0)
 newstream.Write(buffer, 0, chunkLength)
 chunkLength = s.Read(buffer, 0, buffer.Length)
 End While
 End Using
 s.Close()
 Catch
 Log("Error: Error copying " + embeddedFile + " to " + destination)

Methods of Deployment

228

 Return False
 End Try

 Log("Installed " + embeddedFile)
 Return True
End Function

Now how is that for easy –
you have just created a
completely custom
installation program that is
flexible, easy to use,
professional and very
expandable, and all in less
than 300 lines of code!

The only reason I have stopped there with this installation project is
because the book is dedicated to the full product life cycle and not
just the installation side of things, so I feel I have taken this project as
far as needs to be for the purpose of this book

But for those of you excited about this project and want to take it
further, and possibly even commercial (that’s what this book is
guided towards!), here are a few suggestions for improvements to
becoming a commercial installation deployment tool:

- Registry checking functionality (using Win32 library)
- Detecting running processes (such as SLDWORKS.exe)
- Registering for Add/Remove programs entry

Methods of Deployment

229

- Uninstall.exe functionality
- Get selected drives free space / required space
- Create a Next/Previous, wizard style form layout
- Add license agreement rich text box
- Expand on try/catch and error message logging
- Provide a progress bar

Hope you enjoy!

Methods of Deployment

230

231

Licensing Your Product

Overview

Self-Implementation

Corporate Licensing

Licensing Your Product

232

OK so you have now successfully created a marketable software
program, and created a client-side installation package ready for
distribution. But if you have got this far the chances are that you
intend to make the program profitable, not free.

Overview
Although you can sell your program for a fee and provide the client
with the installation package after payment, nothing stops them
from installing your program on any number of machines, or
distributing it to other users. This is OK if you intend to sell the
program license as such, but normally a company or individual would
sell the program on a per-seat basis, so that it is locked to a single
machine at any one given time.

The challenge is to add a method within your program that detects
and identifies a computer (typically a computer is defined by its
hardware, more specifically its motherboard and hard drive as the
key identifiers), and then lock each license that is sold to the specific
machine it is installed and activated on, so if it is installed on another
machine it will fail to run and require another license to be
purchased.

We will take a look at 2 licensing options; self-implementation and
corporate licensing.

Licensing Your Product

233

Self-implementation
For those of you who wish to license a program, but are not fussed
about it being secure, hacked, or otherwise bypassed or feel that the
environment it is to be used in is under no threat suitable to justify
advanced licensing then self-implementation can be a quick, simple
and more importantly free way of licensing your program.

To begin with you need to understand the basics; in order to sell a
license for a single machine; you require your program to firstly
identify the machine it is run on from any other machine. Then use
that identity to generate some form of unique information that is
sent back to the owner of the program. The owner (you) will then use
that unique information to generate unique unlock information
which is sent back to the user and entered into the program to
unlock it and allow it to run.

Once activated (unlocked), it is wise to store the unlock information
so that next time the program is launched the information does not
require entering again.

Remember with self-implementation for the fast, easy solution
things like Windows Protected storage or Web Activation are not
used, so you lose protection and functionality that you would have
with commercial license management software.

Self-implementation is not going to be covered in this book as doing
a good job and making a realistically usable licensing system requires
a lot more knowledge of computer systems and hardware than the
scope of this book covers.

Licensing Your Product

234

Corporate Licensing
The option 95% of licensed software use are corporate licensing
products; by this I mean using products from a corporation that is
dedicated to developing protection software and hardware and has a
proven client base.

Much like installation deployment packages, licensing products all
have their own unique implementation and ways of protecting your
code. Some use obfuscations, protected algorithms, one way
hashing, mutating (rolling) key-codes and much more all of which
you need not understand. All that needs to be understood is how you
go about protecting your code using the product, what level of
protection it offers you and what licensing and distribution
capabilities it opens up for you to see if it suits your needs.

One thing to bear in mind with licensing products is that you are
using .Net compiled software here, so Win32 protection will not do;
you need .Net specific protection.

Here are some examples of protection software you may use to
protect your SolidWorks add-in. Find examples of protecting
programs in chapter 8 of the example files, along with manuals from
the companies:

- FlexLM / X-Form (http://www.x-formation.com)
- Manco Licensing (http://www.mancosoftware.com)
- Skater .Net Licenser (http://www.rustemsoft.com)
- .Net Reactor (http://www.eziriz.com)
- CryptoLicensing (http://www.ssware.com/cryptolicensing)

http://www.x-formation.com/
http://www.mancosoftware.com/
http://www.rustemsoft.com/
http://www.eziriz.com/
http://www.ssware.com/cryptolicensing

235

Distribution and Sales

Preparing your Product for Market

Online Distribution & Sales

In-Store Distribution & Sales

Marketing

Accepting Payment

Distribution and Sales

236

You may realise by now you have covered every aspect of a products
life cycle from the initial thought and planning, right through to
product design, testing, installation and even licensing. One final
stage of this journey is to get some revenue from all your hard-
earned work.

Your product is digital so the first logical step is online sales, but you
still have the choice of in-store distribution also by offering a media
copy, boxed and pre-licensed.

Preparing your Product for Market
Before you market a product it is always best to take care of the
finishing touches on the presentation side of things.

- Create a logo for your product
- Create a slogan
- Create a banner or splash page
- Create a simple website
- Design packaging

All of the above are easy to do and increase sales 10 fold.

First and foremost create a logo for your product; this can be done
using trial versions of Adobe Photoshop, Paintshop Pro or similar. A
logo is often best kept simple; the less in a logo the easier it is to
read, the better it is for mass-format (such as signs, laser cutting,
small print, portability) as you never know where your product make
take you and the last thing you want is to have to re-brand later
down the line due to complex logo designs. You can always add a
purely non-text part to represent a logo, and then a text version.
That way you can use either independently. Take a look at any large
company and their logo:

Distribution and Sales

237

Nothing complicated there; all logos have their text side, and some
have a vector-art side. Vector art is art drawn using solid
mathematical lines and curve data, not pixel art that is purely colours
per-dot on a media.

The reason the logos are kept this way even on the non-text
counterpart is for production; you can have a sticker, cloth branding,
laser etching, and tooling, signs, almost anything made from vector
data so it does not limit the company.

Enough talk let’s make a simple but elegant logo for our SWInfo
product. Grab yourself a copy of Photoshop CS4 trial and open it up.

Creating a Logo in Photoshop
Open up Photoshop and select File->New

Enter 500 pixels as the width, and
300 pixels as the height. This is not
very important as our logo will be
fully vector art so can be scales up
and down with no loss of detail.

http://www.bp.com/home.do?categoryId=1&contentId=2006973
http://www.total.com/en/home_page/
http://www.philips.co.uk/index.page

Distribution and Sales

238

Click the text tool from the tools panel at the left (if you do not
see it go to Window->Tools). Your cursor will change to a text icon
with a caret. Click somewhere in your white workspace to start a text
object.

Type in the word “SWInfo” and then to escape the text tool edit
mode press the Move tool button at the top left of the panel.
That has escaped you from text edit mode (typing text) but we still
want to edit the text properties, so click the text tool icon again
to return to text mode (not text edit mode), and you will see a new
toolbar appear below the main menu:

Change the font family to Century Gothic, the style to Bold and the
size to 48 points.

Now click the Character/Paragraph button at the far left of the
text toolbar to display the more advanced properties for this text
object.

Change the Vertical Scale to 85%, and the Tracking to -75.

Now the text logo has its shape add some colour to
make it more pleasing to the eye. With the text tool
selected from the panel, click and drag from start to
finish the “Info” part of the “SWInfo” text in the
workspace to select it, just like you would select

text in Word or Notepad. To apply a colour to this selection left-click
on the black box on the top text toolbar to the right of the paragraph
alignment icons: to bring up the colour dialog box.

Distribution and Sales

239

Set the colour to R74, G138, B75 to give it a mild blue tint.

Next, select the “SW” part of the text and do the same, only this time
change the colour to R98, G98, B98 to make it a faded grey.

This is our logo so far. Not bad for a start.
But it’s missing a slogan!

I think “Power at your fingertips!” will do nicely.

Come out of text-edit mode by selecting the Move tool and then
back to text mode by selecting the Text tool, and add another text
layer by clicking on the white workspace again to start text-edit
mode. Make sure you click away from the “SWInfo” text or else you
will not create another text object, but instead enter edit-mode for
the “SWInfo” object. If that happens just come out of edit-mode and
try again.

Now type in our slogan “Power at your fingertips!”. Come out of edit
mode and change back to the Text tool, then change the font size
right down to 12 points.Click the Character/Paragraph tool as before
to show the dialog box, and change the Vertical Scale back to 100%
and the Tracking to 0. Set the font colour to R94, G126, B152.

Position the slogan text layer and position it just under the main text
object by selecting the Move tool, then click-dragging the mouse
over the text, or using the arrows on the keyboard. Position it to
something like this:

Good. That makes up our text side of
the logo - time to add a little spice
with a vector art image.

Distribution and Sales

240

Because we want to keep this simple, and I don’t want to overload
the book with Photoshop tutorials our vector art is still going to be a
text object, however I think you will be surprised at the end-result
even so.

Create another text object as before, but this time type a single “?”
as the character. Change the Font Family to Impact, the size to 100
points (not in the drop-down list so just type it straight into the
dropdown box) and the colour to R215, G215, B215.

As we want to place this question mark underneath our logo we need
to change the layer order; to do that look at the Layers toolbar at the
bottom right of the screen (if it isn’t there pressF7).

As you can see the ? layer is at the top; using the
mouse click and drag the layer to the bottom just
above the Background locked layer.

Select the Move tool from the panel and move
the “?” art to underneath the “S” of the “SWInfo” logo.

And there you have it, one quick and simple logo ready for use. There
is no saying you cannot jazz it up for product packaging or websites
or business cards using effects and the likes, because you still have
your original base design if the media needs purely vector art data.

Distribution and Sales

241

Distribution and Sales

242

Online Distribution and Sales
With your logo to hand and installation package ready, it’s time to
start selling and distributing your product online.

The 3 key distribution points online are self-distribution through your
own website or market, resellers of online shops or dedicated sectors
(in this case the sector is SolidWorks), or through a franchise.

The easiest least hassle method (although sometimes harder to get
the initial acceptance of sale) is through dedicated resellers.

Approaching Resellers
Depending on the type of product you are selling determines which
resellers you should go to; books – Amazon, Waterstones; computer
hardware – eBuyer, Micro, Dabs; computer software – depends on
your sector but includes most of the above.

You approach most in the same way; start it with a phone call or
email to the company explaining a little about your product (no more
than 3 sentences as you do not want to overload them with detail at
the initial stage), and express the desire to sell your product with
them as the reseller.

The typical setup is they ask for a sample of 2-3 copies, which you
send to their head office for approval. Once approved you will be
sent some format documentation explaining the standard
agreement that they have; although each companies agreement is
likely to be different the structure tends to be the same:

- You send them your product as and when they request
- You get paid based on their accounts and times, not yours

Distribution and Sales

243

- You receive payment only for the items sold to the
customers, not items sent to the reseller, so post-payment.

- The reseller takes a cut of the profit (15-40%)
- You provide them with a Recommended Retail Price

Dealing with resellers takes the onus of sales mostly off yourself and
frees you up for your next project, at the cost of the profit cut taken.

Self-Sale
Selling a product yourself online is done through a website you own
or control. You may advertise or display it however you want. All you
need to do is provide a method of payment for the customers, and a
way to collect customer information.

The common ways are:

- Online e-commerce system with merchant account
- Stand-alone PayPal
- Postal Order
- Collection

All but the first method can be done by nearly any computer user
that already has a website up and running; chances are if you can get
that far you can add a PayPal button to your site or collect customer
information through a PHP or ASP form.

The first option is through an e-commerce system; although this is
still simple to set up with a bit of knowledge, it is not often used
unless you have more than one item to sell as it can be overkill. Some
free and easy carts are ZenCart, osCommerce, osMax and CubeCart.

Distribution and Sales

244

Franchise
Once you establish a customer-base or get some market awareness
the next option is to look at franchises; if you are lucky you get
people approaching yourself asking to be a franchisee, if not you find
them.

A franchise is better than a reseller as you set your own sales terms
and profit cuts, and as is the general consensus with franchising it is
pre-payment; the franchisee pays in advance for bulk of your product
as a reduced cost of typically 10-20%, and that is your job done –
whatever they sell from that point on at whatever price is their profit.

Distribution and Sales

245

In-Store Distribution and Sales
Some products, including digital products, can also be sold in stores.
The same rules apply with the marketing and approaching as applies
to resellers online, only this time in store resellers have a few more
rules:

- Product must be packaged
- Product must have a traceable number or reference
- Books must have ISBN number
- Digitally licensed products must come with pre-defined

license keys

Obviously some stores have their own rules as always so some of the
above may vary as well as additional ones may apply.

The benefit of In-Store sales is the wider age group and audience
(online was not always around). You get much younger and much
older customers coming into stores compared with those that visit a
website.

Distribution and Sales

246

Marketing
Marketing methods can be explained in one page; create your
marketing bumph (logo, slogan, business card, website banners,
splash pages, leaflets, demos, video tutorials, customer testimonials,
etc...) and then get it out there.

- Pay popular sites a fixed fee to display a banner and website
link to your product

- Send business cards out to known customers and popular
target markets

- Upload video tutorials showing your product working and
get it on the front page of your site!

- Pay Google for a sponsored link to show up better in search
engines

- Ask customers for testimonials; prospectus customers like to
know what other real users think of your product or services
more so than what you say about it yourself

- Get on your best attire, grab your briefcase and get out there
to major retailers and potential distributors of your product.
Approach them directly asking for a 5 minute meeting (in
which you ask to arrange a formal meeting in the future)

There are many methods of marketing and each product has its own
target market, so always take that into consideration when
advertising as there is no point advertising a new Woman’s Dress
Shoe in a book store!

And most of all be patient – sales do not come overnight, success
comes to those who wait it out and persevere. In closing – the best of
luck to all of you, who go on to sell a product of your own, enjoy the
journey!

	Setting Up
	Download and Install Visual Studio Express
	The Project Setup
	Adding the SolidWorks References
	C#
	VB

	SolidWorks Add-ins
	The Basic Add-in
	C#
	VB
	C#
	VB
	Implementing the Interface
	C#
	VB
	C#
	VB
	Attribute Tags
	C#
	VB
	C#
	VB
	C#
	VB
	Automatically Registering the Add-in
	C#
	VB
	C#
	VB

	Testing the Add-in
	Manually Registering for COM

	Menu’s & Property Pages
	Creating Menus
	Setup Call-back Info
	C#
	VB
	The Command Manager
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	The Item Call-back Function
	C#
	VB
	C#
	VB

	/Property Manager Pages
	Creating the PMP Handler Class
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	Error Handling
	C#
	VB
	C#
	VB

	Property Page Controls
	Adding controls
	C#
	VB
	C#
	VB
	C#
	VB

	Call-backs

	Add-ins Vs Stand-alones
	Key Differences
	Pros and Cons
	Add-in Pros
	Add-in Cons
	Stand-alone Pros
	Stand-alone Cons

	Making the right choice
	Hybrids

	Planning and Product Design
	Why plan?
	Pre-development Stage
	Programming Language
	Type of Application
	Structure, Interface & Design

	Initial Development Stage
	Adding Functionality
	Debugging and Testing
	Methods of Debugging
	Stepping and Watching
	The stepping technique
	C#
	VB
	VB C#
	Client-Side Debugging
	Debug Logging
	C#
	VB
	C#
	VB

	Development
	The Blueprint
	The Add-in Class
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB

	The PMP Layout
	C#
	VB
	C#
	VB
	C#
	VB
	The Properties
	C#
	VB
	Adding the Controls
	C#
	VB
	Auto-set ID
	C#
	VB
	Creating the Controls
	C#
	VB
	C#
	VB

	Toggling Pages / Reacting to Events
	C#
	VB
	C#
	VB

	Setting up Hooks
	C#
	VB

	Part Events
	C#
	VB

	Assembly Events
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB

	Drawing Events
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB

	Tidy Up
	Enhancements
	Part Improvements
	Assembly Improvements
	Drawing Improvements

	Methods of Deployment
	Manual Installation
	SFX Archives
	/General
	Update
	License
	Text and Icon
	Advanced

	Installation Packages
	Creating an MSI Installer
	Installing physical file
	Setup Project Properties
	COM registration
	Running custom COM functions
	License Agreement
	Detecting SolidWorks installation

	Creating An Installer
	References
	C#
	VB
	Variables
	C#
	VB
	Embedding Installation Files
	Event Handlers
	C#
	VB
	InitialSetup
	BrowseFolder
	StartInstall

	C#
	VB
	Selecting an Installation Folder
	C#
	VB
	Starting the Installation Process
	C#
	VB
	C#
	VB
	C#
	VB
	The Installation Stages
	C#
	VB
	The Key Functions
	C#
	VB
	RegisterFile

	C#
	VB
	CreateShortcut

	C#
	VB
	InstallFile

	C#
	VB

	Licensing Your Product
	Overview
	Self-implementation
	Corporate Licensing

	Distribution and Sales
	Preparing your Product for Market
	Creating a Logo in Photoshop

	Online Distribution and Sales
	Approaching Resellers
	Self-Sale
	Franchise

	In-Store Distribution and Sales
	Marketing

