

SolidWorks API Series 1

Programming & Automation

Written by Luke Malpass
AngelSix.com

Published by AngelSix

 ©2011 Luke Malpass contact@angelsix.com

 All rights reserved. No part of this publication may be

reproduced or distributed in any form or by any means,

electronic or mechanical, including photocopy, recording, or any

information storage or retrieval system, without prior written

permission of the publisher.

 Published by AngelSix – AngelSix.com

 Second Edition

Trademark Information

 SolidWorks and PDMWorks are registered

trademarks of SolidWorks Corporation.

 Excel is a registered trademark of Microsoft

Corporation.

 Other brand or product names are

trademarks or registered trademarks of their

respective holders.

Contributors

Throughout this project I have received many enthusiastic responses

and people contributing their own ideas and knowledge to areas of

this book. It has been a great experience and an eye opening one.

Their enthusiasm towards this project has been a key driving factor

in pushing me to do this. I just hope that I do not let any of them

down.

Introduction

When I was first introduced to computers at the tender age of 9, I

have always been intrigued how things worked. Not on a basic level

of being told that if you write this portion of code, this will happen,

but to know the reason for every line of code and its purpose. To

know the reason why X comes before Y, and to analyse it and find its

extremes, where it fails and to know its limitations.

It is this drive for deeper understanding that has pushed me in every

aspect of my life, to fully understand computers, electronics, people,

and ultimately the universe. Whenever I come across something I do

not understand, I take it upon myself to learn; learn through

observation, through trial-and-error, through others, through

experience. So far I would like to think I have succeeded in all that

which I set out to understand.

I have always had a unique way of thinking when it comes to

computers and logic; I find most people learn programming through

the process of finding a solution and remembering the answer, such

as knowing that COS(1) = 0.5403, yet they do not know that

.

Whereas I feel most people simply remember coding, I like to fully

understand it, to the point where I could tell you what would happen

with code before even compiling it; I often write 1000’s lines of code

before even compiling and testing it, as I already have in my head the

architecture and theory of what is going to be output, and I simply

translate my thoughts into writing.

By writing this book I hope to pass on my understanding of

computers and programming to the next generation.

I would like to thank my parents for making me the person I am

today, for giving me my morals and personality, and the drive in life

that has lead me to this point.

This book will be my first, aimed at sharing with people my ways of

thinking and programming and hopefully to enlighten at least one

person’s day. All feedback is greatly appreciated, please send

comments to contact@angelsix.com.

This book presumes the reader has a basic understanding of

computer programming on some level, such as the knowledge of if,

else, for, while statements, conditional statements and general

computer skills, and is savvy with SolidWorks.

I have tried to give the best explanation of all code provided on its

purpose, and what the point of every line of code is. I hope you enjoy

reading this book as much as I have enjoyed writing it.

CD CONTENT (case-sensitive link):

http://www.angelsix.com/CODE/SW2008.zip

http://www.angelsix.com/CODE/SW2008.zip

Table of Contents

 The Basics ... 11

 Recording your first macro 12

 Writing a macro from scratch 19

 Connecting with Visual Studio Express 29

 Download and Install Visual Studio Express 30

 Connect to SolidWorks in C#..............................31

 Connect to SolidWorks in VB.Net 52

 Starting SolidWorks Programming 59

 Saving Drawing Sheets as DXF 60

 Get Document Information 68

 Displaying Document Information 77

 Working with Selected Objects..................................... 89

 Identifying Selected Objects 90

 Mating Selected Objects 94

 Setting Material of Selected Objects 98

 Manipulating Dimensions 101

 Selecting Objects ... 107

 Setting a Selection Filter 112

 Property Manager Pages .. 113

 Deriving the base class 114

 Adding items to the Page 128

 Responding to events 144

 Traversing ... 153

 Traversing through an Assembly 154

 Traversing through a Component.................... 159

 Displaying the results 164

 Playing with Components and Features 171

 Custom Property Manager ... 181

 Acquiring a Custom Property Manager 182

 Adding Custom Properties 185

 Deleting Custom Properties 188

Table of Contents

10

 Check Custom Property Existence 190

 Updating Custom Properties 194

 The ConfigSearcher program 196

 Working with Drawings ... 207

Automatically create Drawing Sheet............... 208

 Counting Views .. 219

 Printing Drawing Sheets 230

 Add-ins .. 249

 The basics of an Add-in250

 Removing Add-in entries 268

11

The Basics

Recording your first macro

Writing a macro from scratch

The Basics

12

Recording yours first macro
Let’s get right into the SolidWorks API and use the Macro Record

function to get SolidWorks to create a working macro for us.

Start by opening SolidWorks, and before opening any file from the

menu select Tools->Macro->Record. Most of the actions you

perform will not be recorded by SolidWorks; it’s just to get started.

For now we are simply going to create a new part. Select File->New,

and then File->Save, and save the new empty part wherever you

want.

That’s it; now go to Tools-

>Macro->Stop. This will

instruct SolidWorks to stop

recording your actions, and

subsequently save the

newly created macro.

Save the macro where you

would like.

Now you are returned to SolidWorks like normal. In order to see, and

more importantly to edit and run the macro you just created, you

need to go to Tools->Macro->Edit... Then select the macro you just

saved. This will open up the Visual Basic for Applications

development environment, or for short the VBE.

The first thing you will see is a lot of code to the right, with a tree-

view panel to the left. If you are unfamiliar with the VBE, then just

press F1 within the VBE environment and take a look at the help

topics within there. Don’t get too concerned with that right now, all

The Basics

13

you need to know is that the panel on the left is where you will find

your macro’s files and the properties, and the remaining space to the

right is where your currently selected files content from the left

panel is displayed.

Notice in this screenshot the tree-view to the left labelled “Project –

Macro1”. This is the project explorer where all files related to the

macro you are editing are shown. For now there is only one file, the

module that SolidWorks created. And to the right, is that modules

content.

The Basics

14

Leave the VBE window open and go back to

SolidWorks. Close down all files and on the top file

menu, right-click and select Macro from the menu.

This will save us having to go through the Tools

menu all the time to access the Macro tools Run,

Edit, Record etc... You should now notice that the

Macros toolbar should

now be visible

somewhere on the

window.

Before we get into understanding and editing this macro, let’s first

get this macro to run, check it is working, and to see exactly what it

does.

With no files open, click the Play button on the macro toolbar. This

will play the selected macro instantly. Select the macro you just

created to run it.

Your very first lesson about using the built-in recording functionality

of SolidWorks starts here. Trying to run this macro generates the

following error:

Run-time error ‘91’:

Object variable or With block variable not set

If you click debug, it will take you to the coding in the macro and

highlight the error in yellow:

The Basics

15

OK, so we know this line is causing the error. Without getting too

involved for now, and to get you started, remove the lines so that

you end up with the code below:

Dim swApp As Object

Dim Part As Object

Sub main()

Set swApp = Application.SldWorks

Set Part = swApp.NewDocument("C:\Program

Files\SolidWorks\data\templates\Part.prtdot", 0, 0#, 0#)

Part.SaveAs2 "C:\Users\luke\Desktop\Part1.SLDPRT", 0, False, False

End Sub

Now, click the Save button in the VBE environment to save the

changes and run the macro again (by going back to SolidWorks and

clicking the Run button or by clicking the Run button from within the

VBE environment).

This time running the macro should create a new part and save it. If

you still get errors double-check your code. Remember all code from

this book is found of the accompanying CD.

The Basics

16

Understanding the code
Now we have a working macro that creates a new part and saves it to

a location. Let’s now take a closer look at the code that did this and

understand it.

Firstly, let me explain how macros interact with SolidWorks; in

programming, assemblies can make themselves visible to other

programs running on the system. This is called COM-Visibility.

Basically this allows us to create an instance of the SolidWorks

program (new or currently running) and access any functions that it

makes visible to us. So, the first stage of any macro or program is to

get an instance of SolidWorks to work with. This is done on this line:

Set swApp = Application.SldWorks

But before we get to this line, you will notice that there are several

lines before this. Anything outside of the Sub Main() routine and not

inside another Sub or Function, is classed as a global variable.

Variables are things such as numbers, Booleans (true, false), arrays,

custom objects; this book presumes you have enough knowledge to

know about variables, functions and conditional statements, if not

search google, there are plenty of tutorials and resources available.

Dim swApp As Object

Dim Part As Object

The Basics

17

Dim is the name used in VBA to declare a variable, following that is

the variables name, then ‘As’, and then its type.

Above, the macro has declared two variables. Two variables of type

Object, which is a universal type that all other types come from;

these will be used in the main() routine.

Firstly, once the macro is run, it enters the main() routine after

declaring its global variables. The first line within the main function

is the line which creates a new instance of the SolidWorks program

through COM as we discussed previously:

Set swApp = Application.SldWorks

Now, the recorded macro then goes on to create a new document by

calling the SolidWorks function NewDocument. In order to be able

to find this newly created part after it is created, the NewDocument

function returns what is called a “handle” to the new document it

creates, so we can find it immediately. Any return value of a function

is set to the variable to its left, so in this case the variable Part is set

to the newly created document handle that is returned:

Set Part = swApp.NewDocument("C:\Program

Files\SolidWorks\data\templates\Part.prtdot", 0, 0#, 0#)

The first parameter to the NewDocument function is the template

location, the other 3 are for drawing documents only.

The Basics

18

Don’t worry too much about the parameters until later; all will be

explained.

Finally, the macro calls a function of the newly created Part variable

called SaveAs2.

Part.SaveAs2 "C:\Users\luke\Desktop\Part1.SLDPRT", 0, False, False

The first thing you will notice about this call unlike the previous, is

that this one is calling a function from the Part variable, whereas the

previous was from the SolidWorks object itself (swApp). The second

is that even though we are calling a function still, there are no

parentheses. In VBA, if a function is called without ()’s then it is not

returning a value. That is not to say that the function itself doesn’t

return a value, just that we are not making any use of it on this call.

Again, the SaveAs2 function takes 4 parameters; this first is the

name and location of where to save the file. The other 3 I shall cover

later.

And that is it; you have just created your first SolidWorks Macro!

The Basics

19

Writing a macro from scratch
 Now it is time to get deeper into the code, to understand every part

of the code, line by line. Let’s begin.

This time, from SolidWorks, select New from the Macro Toolbar and

save the macro to your desired location. This will automatically open

the VBE environment for you to start coding, as well as add some

lines of code, and behind the scenes add references for you as well.

To truly start from scratch, delete the code from the main window.

As well as the code, SolidWorks added a reference to itself, so I am

going to explain how to add this yourself (something you will need to

do later using Visual Studio).

In the VBE, go to Tools->Reference... This will open up all references

to this macro. References are links to libraries that your macro is

going to use. When we create new instance of SolidWorks in our

code, or call functions such as NewDocument and SaveAs2, these

are functions from the SolidWorks library. In order for our macro to

know about these functions, we must reference the correct

SolidWorks libraries first.

Although already

checked, if they weren’t,

you would simply scroll

down the list and check

the SolidWorks Types,

Constants, Commands

and Extensibility

libraries to add them to

your project.

The Basics

20

With a fresh clean empty macro ready to work with, we will begin by

re-creating the recorded macro, but do it the correct way this time.

Creating variables of the correct type
One thing the record feature does not do when creating its code is to

give variables their correct type. Instead it simply stamps them all as

Objects. Of course, creating our own, we are going to do it right.

Start by declaring the variables we had in the first macro, only this

time notice the types of the variables:

Dim swApp As SldWorks.SldWorks

Dim swPart As ModelDoc2

When creating a new instance of the SolidWorks application, it

actually returns an object of type SldWorks.SldWorks. This is the

main SolidWorks variable for the entire SolidWorks environment.

With this macro, we want to create a new part and save it, so we

need another variable of type ModelDoc2. I have also renamed the

variable to swPart for easier reading.

On to the actual main function where all code starts; press enter

twice to give your code some space from the variables, and then

type:

Sub main()

End Sub

The Basics

21

We begin a Sub or Function with exactly that, followed by its name

(in this case main), followed by parentheses and then within them

any parameters, and finally, to close the Sub/Function, we type End

Sub/Function respectively.

Within this sub is where we are going to start coding. Firstly, instead

of creating an instance of the SolidWorks application using the usual

recorded method, we are going to use a more portable method:

Set swApp = GetObject(“”, "SldWorks.Application")

Here, we are calling a function from the VBA library called

GetObject. This function is used to get a COM object of a currently

running process. The first parameter of this function is the path

name, which is always a blank string or nothing at all, and the second

one is the class name. The class name is the name that the COM

object registers itself with, and SolidWorks registers itself as

SldWorks.Application, so that is what we type.

Let’s stop here and add a little error handling. The GetObject

function either returns an object of that class is, or nothing. If we test

the variable as to whether it is nothing or not, then we know if we

succeeded in getting a handle to a running SolidWorks application.

If swApp Is Nothing Then

MsgBox "Error gettings SolidWorks Handle"

Exit Sub

End If

The Basics

22

All we have done here is test if swApp is Nothing, and if it is,

meaning we failed to get a handle to any running SolidWorks

applications, then display a message box error, and exit the sub

effectively quitting the macro.

Now it’s time to create a new part; in order to better understand

what we need to do to create a part, go back to SolidWorks, leaving

VBE open, and from the menu select Help->API Help, to open up the

reference documentation for SolidWorks API calls. This comes in

handy and is almost always the starting point for any new task.

In the help file, go to the search tab and type in “NewDocument”

without quotations. In the results to the left double-click

SldWorks::NewDocument. The help file simply uses a double colon

instead of a period to signify that the right hand side is a method or

property of the object to the left.

Reading the help gives us a brief description of what the

NewDocument function does and requires. The help shows that the

function takes 4 parameters:

SldWorks.NewDocument (templateName, paperSize,

width, height)

The templateName is the full location of the template to create the

document from (a drawing, part or assembly template). The

paperSize is a special type of variable called an enumerator, but we

do not need this variable for creating our part, and the same goes for

width and height. One final note; the help file states that the return

type is either a pointer to the dispatch object or Nothing if it fails. So

we know from that, we can check for nothing again, just like before,

to find out if the operation succeeded.

The Basics

23

Now let’s add the line of code to create a new part. For simplicity at

this stage just type in the location of your required part template file;

we could create a drop down list with all available templates of the

currently installed templates, but that would just overwhelm the

exercise at this point.

Set swPart = swApp.NewDocument("C:\Program

Files\SolidWorks\data\templates\Part.prtdot", 0, 0, 0)

Now, let’s check whether we managed to create a new part or not.

If swPart Is Nothing Then

MsgBox "Error creating new part"

Exit Sub

End If

And finally, let’s save this part to any location you select. Later on we

will create some user interaction that prompts the user for a save

location, but for now just type it in.

Start by searching the help file for “SaveAs2” like we saw in the first

macro. Double-clicking on ModelDoc2::SaveAs2 you will notice that

the help file states that this function is obsolete in red writing, so

click the suggested link of ModelDoc2::SaveAs3. This will again tell

you that this is obsolete. Keep clicking until you get to

ModelDocExtension::SaveAs. Now read the help to find out about

the parameters required.

Retval = ModelDocExtension.SaveAs (Name, Version,

Options, ExportData, Errors, Warnings)

The Basics

24

First, Name is declared as type BSTR, which is a string. This is again

the name and location of where to save the file, which we will type in

manually for now.

Now onto the Version parameter; the help states that this is of type

Long, which is a number, yet the document says it is a format of type

swSaveAsVersion_e. Let me explain; the type swSaveAsVersion_e

is called an enumerator, or enum for short. This is basically a

collection of numbers (Long’s) given names for ease of

understanding for the programmer. Instead of typing a number all

the time you can type a descriptive name. This enum, and all of the

others you will encounter for SolidWorks, is located in the

SolidWorks Constant library we referenced at the very beginning, so

all we need to do is access the constant library with SwConst name.

As you type you will notice the menu popping up showing you all

available properties and methods of the previous object. Drill down

until you get to the swSaveAsVersion_e, and you will see the

following options:

From this list select swSaveAsCurrentVersion. You will never use

the other versions for the remainder of this book.

The next parameter, Options, is again an enum, this time of type

swSaveAsOptions_e, so let’s take a look at what possible values we

have:

The Basics

25

With enumerators being numbers once compiled, we can combine

any combination of them into one variable, so long as the function

taking it can process combinations. In this case it can, and if you

wanted to pass two options, you would simply separate them like so:

swSaveAsOptions_Copy + swSaveAsOptions_Silent

By separating them by a + we can pass the two as one parameter. In

this case we only need to pass one; swSaveAsOptions_Silent. This

prevents any messages being shown to the user when saving the

document. If you did not want to pass any options for any enum

parameter, you pass the number 0 in its place.

The forth parameter is export data, which is purely used for

exporting 3D PDFs at present, so we simply pass Nothing for this.

Notice for the last two parameters Errors and Warnings, the help file

states they are outputs, not inputs. This means that whatever

variables we pass in here will be updated and set to new values after

the function has run, so we can check the values of these two

variables to understand what has happened and if there are any

errors or warnings.

The Basics

26

Finally, the help file states this function returns a Boolean value

(true/false) indicating whether the save succeeded or failed, so we

can do another check for failure, and if so, we could access the error

and warning variables for more information on the failure, but for

now, we will just accept a failure as a failure.

Putting all this together, with error checking, we get:

Dim bRet As Boolean

Dim lErrors As Long

Dim lWarnings As Long

bRet = swPart.Extension.SaveAs("C:\Part1.SLDPRT",

swSaveAsCurrentVersion, swSaveAsOptions_Silent, Nothing, lErrors,

lWarnings)

If bRet = False Then

MsgBox "Error saving new part"

Exit Sub

End If

Take note: as the function we are using is from the

ModelDocExtension object, not the ModelDoc2 object we have, we

have to select the Extension object from our ModelDoc2 first.

You may notice I have also omitted the SwConst and

swSaveAsVersion_e and swSaveAsOptions_e. This is not exactly

required in VBA it just helps for clarity to start with.

And that is it. Save your macro and test it. If you get any errors

review your code, or look at the complete macro on the

accompanying CD. Find the final listing below.

The Basics

27

Dim swApp As SldWorks.SldWorks

Dim swPart As ModelDoc2

Sub main()

Set swApp = GetObject("", "SldWorks.Application")

If swApp Is Nothing Then

MsgBox "Error gettings SolidWorks Handle"

Exit Sub

End If

Set swPart = swApp.NewDocument("C:\Program

Files\SolidWorks\data\templates\Part.prtdot", 0, 0, 0)

If swPart Is Nothing Then

MsgBox "Error creating new part"

Exit Sub

End If

Dim bRet As Boolean

Dim lErrors As Long

Dim lWarnings As Long

bRet = swPart.Extension.SaveAs("C:\Part1.SLDPRT",

swSaveAsCurrentVersion, swSaveAsOptions_Silent, Nothing, lErrors,

lWarnings)

If bRet = False Then

MsgBox "Error saving new part"

Exit Sub

The Basics

28

End If

End Sub

Hopefully you have learned quite a lot from this section. Although

we have not covered many calls or seemingly done much with

SolidWorks, we have covered a lot of technical ground that will

provide a solid foundation for the rest of the book.

You will find once you know these main foundations, the rest is

simply a case of calling the functions you would like, and through

trial and error, or research or the aid of others, you find what you are

after.

29

Connecting with Visual Studio Express

Download and Install Visual Studio Express

Connect to SolidWorks in C#

Connect to SolidWorks in VB.Net

Connecting with Visual Studio Express

30

Download and Install Visual Studio

Express
Before you can begin you must download and install the Visual

Studio software for your desired language.

Go to http://www.microsoft.com/express/download/default.aspx and

simply download and install either C# Express and/or VB.Net

Express. All guides to installing them are on the site.

When you have installed the program, run it. You may be prompted

to select layout style or preferred language, just select any.

Now you are ready to begin.

http://www.microsoft.com/express/download/default.aspx

Connecting with Visual Studio Express

31

Connect to SolidWorks in C#
When you first open C# Express you are displayed with the following

screen:

To get started, just select File->New Project... and select Windows

Forms Application. In the Name box, enter any name you like and

press OK.

This will then create your project and automatically create a blank

form for you. We are going to create a button that on clicking will

effectively initiate our “macro” as such.

To the left you will notice a toolbar icon. Click or hover over that

to expand the menu. Find the Button item and drag it onto your

form to create a new button. Once the button is on the form,

Connecting with Visual Studio Express

32

make sure it is selected. On your right will be the properties panel; in

here is where the current selected items properties will appear. For

our button we are going to change the text within it to “Start”. Scroll

down the properties until you find the property Text, and then type

in “Start” without the quotations and press enter. The button will

instantly update.

Event Handlers
Now all that is left to do is to add what is called an Event Handler to

the button, so that when the user clicks it, something happens (an

event, or more literally, a function in code, is called). To do this you

can just double-click the button, but to understand it better I will

show you how to do it another way.

In the property window where you just set the text of the button,

notice the icon. This switches between properties and events.

Click it to take you to the buttons events (make sure the button is

still selected). Now scroll down and find the event called Click, and

double-click it. This will automatically create you the event handler

code and take you to it.

Connecting with Visual Studio Express

33

You will notice you are now in a coding window not a visual design

window. Let me explain; above the Property Panel to the right is the

Solution Explorer. This is the same as the Project Explorer in VBA

that showed all files in the macro. We use this like windows explorer

to open, close, delete and

rename files in our project. The

only file you need to be aware of

right now is the Form1.cs (or

whatever you called your form.

To open the form designer

(where we added the button

visually) just double-click

Form1.cs in the Solution

Explorer; to get to the coding

behind the form right-click and

select View Code.

Back in the code view, you will have some code already in the

window to get you started. This is what Visual Studio created

automatically when you selected to create a Windows Form project.

Just like VBA, VS has added the required reference libraries for

creating a form and added the required code.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

Connecting with Visual Studio Express

34

namespace ConntectingWithCS

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {

 }

 }

}

Let’s go through each line of this code again so that you understand

what is going on.

The only lines that can be outside of a class in VS are special

declarations such as #Regions, pre-processor tags, namespace’s

and using statements. The only one we are concerned about is the

using statement.

The using Statement
In the C# language, using is a statement that simply tells the

compiler that in any code within this file, we will be using classes and

functions from the specified library. Strictly speaking, you can

Connecting with Visual Studio Express

35

remove all the using statements and still make your code work, but

the advantage of using is that, like in VBA where I excluded typing

swConst and swSaveAsVersion_e, it tells the compiler that if we

typed Environment (which is actually a member of the System

Library) it knows that we are accessing the System.Environment

object.

Another example is that without typing using System.Drawing, we

would have to write the following to access a Point object:

System.Drawing.Point

Whereas by having the using System.Drawing statement at the top

of the code, we only need to type:

Point

So if brief, using statements simply save typing long-winded code

statements.

Namespaces
Namespaces, again like using statements, are not strictly needed. To

keep this short, you can remove the namespace statement and its

open and closing curly braces or leave them in. For our usage

throughout this book it will make no difference. They are basically

used to group classes and coding blocks into a single accessible

name, to be accessed like an object.

Connecting with Visual Studio Express

36

The next line is the declaration of the class for the form we created

(the form with the button). This will always be generated

automatically for our use so you do not need to type this part

manually at any stage.

public partial class Form1 : Form

To explain; the public keyword states that this class is accessibly to

any other part of code within the program. Do not worry too much

about this; it does not play any important role for us. The partial

statement means that this class has been split into multiple files. The

other file in this case is the code that VS has created automatically to

create our form, the button and the event handler links etc... To take

a look at this file, go to the Solution Explorer, click the [+] next to

the Form1.cs file and double-click the Form1.Designer.cs file to see

its code. Do not worry if you do not understand this code because we

are here to focus on SolidWorks programming.

The { } braces are used for all classes, functions, if, else, while, do

and other statements in C# to determine the start and end of its

block of code. This is equivalent to VBAs If ... Then and End If, or

While... Wend.

Within the main class (Form1), we find the following function:

 public Form1()

 {

 InitializeComponent();

 }

Connecting with Visual Studio Express

37

This is called the constructor class, and this gets called as soon as the

form is created. A constructor class has the same name as the class it

is within (in this case Form1), and has no return value. The only

function within it is a call to the function defined in the

Form1.Designer.cs class that is created automatically by VS to

create the form, create all the items like our button, add event

handlers, set properties, and show the form. If you placed code after

this InitializeComponent function call, that code would get run as

soon as the form is created, so to the user it would appear that the

code runs as soon as they run the program. As this is not the

behaviour we want, we go on to create a function that is called on

the click of a button instead.

The Button Click function
Visual Studio automatically created the following function for us

when we chose to add an event handler for the Click event of the

button in the previous stage.

 private void button1_Click(object sender, EventArgs e)

 {

 }

A function in C# has the following structure:

[accessibility] [return type] [function name] (

[parameters])

{ // Code here }

Connecting with Visual Studio Express

38

Accessibility is either public, private or protected as standard. For

our usage we are going to be using public throughout.

Return type must always be defined, except for constructors and

destructors. This is the type of variable that the function returns,

such as a number (Integer, Double, Float) or text (String), or

true/false (Boolean) as some examples. If your function does not

return any value then the type is void.

The function name is anything you like, so long as it begins with a

letter, and contains no special characters or spaces.

The parameters inside the function are defined in the following

structure:

[pass as] [variable type] [variable name]

The pass as value can be out or ref, or left out completely. By

default, if you pass a variable without stating out or ref, and that

function then alters the variable inside its own code, once the

function has run and returned, the variables value will return to what

it was before the function call, so it remains unaffected. If this is not

the behaviour you want (such as we will see later on), then you can

pass the variable as out or ref. The out keyword means the variable

you are passing must not have been assigned a value yet, and if you

pass it as ref, it must have. You will see this used later.

The variable type is any type like the return value, such as a number,

text, object etc... A variable parameter type cannot be void.

The variable name can be any name again, starting with a letter

containing no special characters or reserved names or spaces.

Connecting with Visual Studio Express

39

So using that knowledge we know that this event handler function

that VS has created for us when the button is clicked returns no value

(void) back to its caller, is private so inaccessible to certain areas of

code, is called button1_Click, and takes 2 parameters.

The first parameter is of type object. This is because an event

handler can be attached to many different objects, in this case it is

our button, so this variable called sender is actually a reference to

our button object. The second is a special type EventArgs; this

variable contains information about the event. We do not need to do

anything with either of these parameters so let’s move on.

Adding the SolidWorks References
Before we can do anything, we must add the same references to

SolidWorks that we did in VBA. In the Solution Explorer, right-click

the References item and click Add Reference... Once the dialog

appears, click the COM tab, and then from the list select the

following items (holding Ctrl to select multiple in one go), and click

OK.

SldWorks 2008 Type Library

SolidWorks 2008 Commands type Library

SolidWorks 2008 Constant type Library

SolidWorks 2008 exposed type libraries for add-in use

And then finally, at the top of the code where the using statements

are, add:

using SldWorks;

Connecting with Visual Studio Express

40

Writing our SolidWorks Code
We now have an entire C# program structure, ready to write our

SolidWorks code inside our event handler function. All examples and

codes done in C# from now on will presume this same structure, and

only provide and describe the code that will be run inside this event

handler, or wherever you decide to put it. So for our first example

let’s re-create our first written macro we made in VBA.

Connecting with Visual Studio Express

41

So first let’s define our variables again; we can define these either

inside this function, or inside the main class function. For example:

 public partial class Form1 : Form

 {

 SldWorks.SldWorks swApp;

 ModelDoc2 swModel;

 ...

 private void button1_Click(object sender, EventArgs e) { ... }

 }

Or inside the button1_Click function shown above...

 private void button1_Click(object sender, EventArgs e)

 {

 SldWorks.SldWorks swApp;

 ModelDoc2 swModel;

 ...

 }

For best practise in the future I will be writing the main variables in

the main class not the event handler.

Declaring a variable in C# is a little different than VBA; you simply

state the type first, followed by the name. As you can see, the two

variables specified above are the same types of the ones we wrote in

VBA.

With these variables defined, we move on to the main SolidWorks

code. Take a look at the original VBA code; see the slight changes:

Connecting with Visual Studio Express

42

VBA

Set swApp = GetObject("", "SldWorks.Application")

If swApp Is Nothing Then

MsgBox "Error gettings SolidWorks Handle"

Exit Sub

End If

Set swPart = swApp.NewDocument("C:\Program

Files\SolidWorks\data\templates\Part.prtdot", 0, 0, 0)

If swPart Is Nothing Then

MsgBox "Error creating new part"

Exit Sub

End If

Dim bRet As Boolean

Dim lErrors As Long

Dim lWarnings As Long

bRet = swPart.Extension.SaveAs("C:\Part1.SLDPRT",

swSaveAsCurrentVersion, swSaveAsOptions_Silent, Nothing, lErrors,

lWarnings)

If bRet = False Then

MsgBox "Error saving new part"

Exit Sub

End If

Now, let’s do exactly this but in C# within our event handler button

function.

Connecting with Visual Studio Express

43

Firstly, because C# does not use the GetObject function to acquire a

handle to SolidWorks, we must use another function found in the

System.Runtime.Interop library. Add the following line to the using

section:

using System.Runtime.InteropServices;

Now, to get the active SolidWorks object, we do this:

swApp =

(SldWorks.SldWorks)Marshal.GetActiveObject("SldWorks.Application");

Note that there is no such thing as a Set statement like in VBA, we

do not need this. What we are doing here is calling the function

GetActiveObject from the Marshal class in the

System.Runtime.InteropServices library we added just. This

function is identical to the VBA GetObject function.

Casting
Because C# is stricter on variable types, unlike VBA, we must do all

the type conversions ourselves. Because the function

GetActiveObject returns a variable of type object, we must convert

it to the correct type, using a method called Casting.

Connecting with Visual Studio Express

44

To cast the object returned from GetActiveObject, we simply write

the type of variable we would like it converting to inside parentheses

before the method and after the equals sign. This does the job of

converting the object to our variables type. In this case we typed

SldWorks.SldWorks, which is the type of the swApp variable.

Try/Catch block
Now we wish to check if we have managed to get the SolidWorks

object; however, this time we do this a little differently. Because the

GetActiveObject function actually throws a system error if it fails we

must try the function and catch any system errors that get thrown. If

we do not handle this error our program will simply crash. We do this

by placing the statement within a try/catch block.

try

{

 swApp =

(SldWorks.SldWorks)Marshal.GetActiveObject("SldWorks.Application");

}

catch

{

 MessageBox.Show("Error getting SolidWorks Handle");

 return;

}

When you place something inside a try block, your program will

handle any system errors that are caused by any code you place

within there, and instead of crashing your program, it passes them to

the catch block. So in effect, we try the GetActiveObject function,

Connecting with Visual Studio Express

45

and if it succeeds our code continues to execute after the catch

block. If it fails, our code jumps out of the try block at the point the

error occurs, and goes straight to the catch block to process any

code within there, not executing any code in the try block after the

point of the error.

If we get the handle, we carry on to after the catch block with a

workable swApp variable. If it fails, we show the user a message box

and call the return statement, which returns the function, effectively

ending it, so we proceed no further with the function.

Creating a new document
Now we have a workable swApp variable, we want to create a new

document. To do this we call exactly the same function as we did

before, with exactly the same parameters, setting the swModel

variable at the same time.

swModel = (ModelDoc2)swApp.NewDocument(@"C:\Program

Files\SolidWorks\data\templates\Part.prtdot", 0, 0, 0);

The only thing different here is the @ sign placed within the

parentheses but before the opening quotes. All that this means is the

following string contains back/forward slashes as literal characters

instead of escape characters. If we did not put the @ in, we would

need to put \\ for every single slash we wrote, because as standard \

is used to place special characters in strings, such as \t for a tab.

Also, we have done another casting from object to ModelDoc2 as

our variable is of type ModelDoc2.

Connecting with Visual Studio Express

46

When typing in any .Net language, you will find you get much better

feedback from the Vs IntelliSense telling you about the object you

are using.

Now to check that the document was created correctly:

if (swModel == null)

{

 MessageBox.Show("Error creating new part");

 return;

}

This statement says “if swModel is equal to null then”. In C#, ==

means “is equal to”. When setting variables in C# we use single

equals sign (=), but when performing conditional checks such as “is

equal to” we use double equals (==).

C#
== Is Equal To

!= Is Not Equal To

<= Is Less Than or Equal To (Numeric)

>= Is Greater Than or Equal To

< Is Less Than

> Is Greater Than

= Set variable to left

*= Multiple left variable by right

/= Divide left variable by right

^= XOR left variable by right

+= Add right variable to right

-= Subtract right variable from left

Connecting with Visual Studio Express

47

VB.Net
= Is Equal To / Set variable to left

<> Is Not Equal To

<= Is Less Than or Equal To (Numeric)

>= Is Greater Than or Equal To

< Is Less Than

> Is Greater Than

*= Multiple left variable by right

/= Divide left variable by right

^= XOR left variable by right

+= Add right variable to right

-= Subtract right variable from left

Saving the part
Now it is time to save the part; in order to use constants such as the

save as version and options, I have added the following to the using

section, to save us having to type SwConst before every constant.

using SwConst;

Now we define some variables used in the SaveAs function, then

attempt to save the part, and finally check if it succeeded.

int lErrors = 0, lWarnings = 0;

bool bRet = swModel.Extension.SaveAs(@"C:\Part1.SLDPRT",

(int)swSaveAsVersion_e.swSaveAsCurrentVersion,

(int)swSaveAsOptions_e.swSaveAsOptions_Silent, null, ref lErrors, ref

lWarnings);

if (!bRet)

Connecting with Visual Studio Express

48

{

 MessageBox.Show("Error saving new part");

}

Firstly, we defined the variables needed for the error and warning

values. Then at the same time as declaring the variable bRet (true or

false), we also set it by calling the SaveAs function.

A few differences this time compared to the VBA version. In VBA, to

represent “nothing” we pas the special name Nothing, in C# the

equivalent is null.

We also cast the constant enums to int as the function requests int

values. And if you notice the Intellisense tooltip you see that it

states that the error and warning variables should be passed as ref.

If you recall earlier me telling you about ref and out keywords; by

passing these two variables as ref means that when the SaveAs

function alters them within its own code, the two variables can be set

inside the SaveAs function. The easiest way to explain it is that if you

pass variables without a ref or out keyword, they are copied to the

function, not sent directly, so any alterations made are made to

copies of the variables, not the originals. By passing them with ref or

out, the originals are sent.

Notice we passed the two variables we defined for errors and

warnings as ref, so as soon as the SaveAs function has been called

the variables will be set to whatever SaveAs set them to. We could

then check these variables after if the function returned false

(meaning it failed to save). We also had to assign them before

Connecting with Visual Studio Express

49

passing them as they are passed as ref, not out; that is the reason for

assigning them the value 0.

Once the SaveAs function has been called and the return value has

been saved in the bRet variable, we then check whether this bRet is

true or false. If you place a Boolean value inside an if statement,

there is no need to do a check such as bRet == true or bRet == false,

you just put the variable in the parentheses. Because we do not want

to check if bRet is true (success), but false, we place the not sign (!)

before it to say “if bRet is not true”, instead of “if bRet is true” so the

code within the if statement will only run if bRet is false.

There is no need to place a return in this block as it is the end of our

code within this function anyway. And that is it, go to Build->Build

Solution to build your program, and then Debug->Start Without

Debugging (or press F6, then Ctrl+F5) to run your program.

Make sure SolidWorks is open then go to your form and click the

button to see the magic. If you have errors check you code with the

code on the CD. Complete listing below:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Runtime.InteropServices;

using SldWorks;

Connecting with Visual Studio Express

50

using SwConst;

namespace ConntectingWithCS

{

 public partial class Form1 : Form

 {

 SldWorks.SldWorks swApp;

 ModelDoc2 swModel;

 public Form1()

 {

 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {

 try

 {

 swApp =

(SldWorks.SldWorks)Marshal.GetActiveObject("SldWorks.Application");

 }

 catch

 {

 MessageBox.Show("Error getting SolidWorks Handle");

 return;

 }

 swModel = (ModelDoc2)swApp.NewDocument(@"C:\Program

Files\SolidWorks\data\templates\Part.prtdot", 0, 0, 0);

Connecting with Visual Studio Express

51

 if (swModel == null)

 {

 MessageBox.Show("Error creating new part");

 return;

 }

 int lErrors = 0, lWarnings = 0;

 bool bRet = swModel.Extension.SaveAs(@"C:\Part1.SLDPRT",

(int)swSaveAsVersion_e.swSaveAsCurrentVersion,

(int)swSaveAsOptions_e.swSaveAsOptions_Silent, null, ref lErrors, ref

lWarnings);

 if (!bRet)

 {

 MessageBox.Show("Error saving new part");

 }

 }

 }

}

One thing you may notice is that C# requires every statement line to

end with a semi-colon (;).

Connecting with Visual Studio Express

52

Connecting to SolidWorks in VB.Net
When you first open VB.Net Express you are displayed with the

following screen:

To get started, just select File->New Project... and select Windows

Forms Application. In the Name box, enter any name you like and

press OK.

This will then create your project and automatically create a blank

form for you. We are going to create a button that on clicking will

effectively initiate our “macro”.

From this point on up until you add the event handler to the button,

is exactly the same process as the C# section, so refer to that. Once

you have created the event handler you will be taken to the coding

section, but this time it looks rather different from the C# code.

Connecting with Visual Studio Express

53

You will also notice that in

the Solution Explorer, by

default, there is no

Reference item. Just click

the second icon in the

explorer called “Show All

Files” to show the

References folder.

Add the SolidWorks references just like you did in the C# project.

Now you are ready to begin.

VisualBasic.Net follows VBA much closer than C# so you may find it

similar to the VBA example.

VB.Net does not use the using statements like C#, it uses Imports

instead. So at the very top of the forms’ code (right-click on

Form1.vb->View Code) place this code to import the SolidWorks

library in for use. Again this is not essential it just saves typing the

library name before every variable.

Imports SldWorks

Let’s define the usual variables by using the VB.Net syntax:

Dim [variable name] As [variable type]

Place the variables inside the main class function, not the button

click function. You entire code so far should look like this:

Connecting with Visual Studio Express

54

Imports SldWorks

Public Class Form1

 Dim swApp As SldWorks.SldWorks

 Dim swModel As SldWorks.ModelDoc2

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button1.Click

 End Sub

End Class

To get an instance of SolidWorks, in the button click function place

the following; it is exactly the same as VBA:

swApp = GetObject("", "SldWorks.Application")

And now we check if we managed to get the handle. This again is

very similar to VBA so requires no explaining:

If swApp Is Nothing Then

 MsgBox("Error getting SolidWorks Handle")

 Exit Sub

End If

Exit Sub is the VB.Net equivalent of C#’s return, to effectively

return from the current function or sub.

Connecting with Visual Studio Express

55

With a working SolidWorks application instance we will now attempt

to create a new document and at the same time assign the new

document to the swModel variable.

swModel = swApp.NewDocument("C:\Program

Files\SolidWorks\data\templates\Part.prtdot", 0, 0, 0)

Like VBA, VB.Net does explicit object casting automatically, so we

do not need to manually cast the returned object to ModelDoc2

type, like we did not need to cast the object from GetObject to

SldWorks.SldWorks above.

And again, we check if we managed to create the new part:

If swModel Is Nothing Then

 MsgBox("Error creating new part")

 Exit Sub

End If

Before we save, we will add the following to the Imports section to

save us some typing:

Imports SwConst

And define the required variables and pass the errors and warning

variables as references, like in C#. Only in VB.Net we do not need to

state the keyword ByRef as VB.Net automatically passes the

variables as references without any keywords.

Connecting with Visual Studio Express

56

Dim lErrors As Long = 0, lWarnings As Long = 0

Dim bRet As Boolean = swModel.Extension.SaveAs("C:\Part1.SLDPRT",

swSaveAsVersion_e.swSaveAsCurrentVersion,

swSaveAsOptions_e.swSaveAsOptions_Silent, Nothing, lErrors,

lWarnings)

When passing by reference we need to assign an initial value to the

variables like in C#, this is why we set lErrors and lWarnings to 0.

Finally, we check if we managed to save the part.

If Not bRet Then

 MsgBox("Error saving new part")

End If

And that’s it for VB.Net. Easy huh? Just press Ctrl+F5 to build and

start your project and test it again just like the C# version.

As usual, if you have any problems, double-check your code, and if all

else fail, compare it to the working version on the CD.

This template will be used throughout the rest of the book just like

the C# template, and only the coding within the event handler will

be displayed and explained from now on.

Important Note: All examples on the CD are compiled with

references to SolidWorks 2008 SP3.0. If for any reason you get

errors when building them, remove and re-add your SolidWorks

references and try again. This is a common problem for most people

when using examples from another machine.

Connecting with Visual Studio Express

57

VB.Net

Imports SldWorks

Imports SwConst

Public Class Form1

 Dim swApp As SldWorks.SldWorks

 Dim swModel As SldWorks.ModelDoc2

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button1.Click

 swApp = GetObject("", "SldWorks.Application")

 If swApp Is Nothing Then

 MsgBox("Error getting SolidWorks Handle")

 Exit Sub

 End If

 swModel = swApp.NewDocument("C:\Program

Files\SolidWorks\data\templates\Part.prtdot", 0, 0, 0)

 If swModel Is Nothing Then

 MsgBox("Error creating new part")

 Exit Sub

 End If

 Dim lErrors As Long = 0, lWarnings As Long = 0

 Dim bRet As Boolean =

swModel.Extension.SaveAs("C:\Part1.SLDPRT",

Connecting with Visual Studio Express

58

swSaveAsVersion_e.swSaveAsCurrentVersion,

swSaveAsOptions_e.swSaveAsOptions_Silent, Nothing, lErrors,

lWarnings)

 If Not bRet Then

 MsgBox("Error saving new part")

 End If

 End Sub

End Class

59

Starting SolidWorks Programming

Saving Drawing Sheets as DXF

Get Document Information

Displaying Document Information

Starting SolidWorks Programming

60

Right, let’s get into some interesting SolidWorks programming!

Working with the templates we have created previously, make a new

macro or project and connect to SolidWorks. Call the SolidWorks

object variable swApp.

Saving Drawing Sheets as DXF
One of the most common and popular requests, and often one of the

driving factors for getting into SolidWorks API programming is to do

things automatically that the user would normally have to do over

and over manually. The following code will allow us to save every

sheet of the current drawing to separate DXF files. We will also get

the save as location from the user in the .Net examples.

To get a handle to the current open drawing in SolidWorks we do the

following:

C#

swModel = (ModelDoc2)swApp.ActiveDoc;

if (swModel == null)

{

 MessageBox.Show("Failed to get active document");

 return;

}

if (swModel.GetType() != (int)swDocumentTypes_e.swDocDRAWING)

{

 MessageBox.Show("Active document is not a drawing");

 return;

}

Starting SolidWorks Programming

61

VBA

Set swModel = swApp.ActiveDoc

If swModel Is Nothing Then

MsgBox "Failed to get active document"

Exit Sub

End If

If swModel.GetType() <> swDocumentTypes_e.swDocDRAWING Then

MsgBox "Active document is not a drawing"

Exit Sub

End If

* Find VB.Net example on CD

Notice we get the ActiveDoc object from swApp, which will return

either nothing or the handle to the document that is visible in

SolidWorks. We then check that we have a document, and if we do

we check that it is a drawing, else we stop. We do this by calling the

ModelDoc2 function GetType, which returns an integer value

representing the type of either None, Part, Assembly or Drawing. If

you read the API help and type in ModelDoc2::GetType as the

search you will find that it doesn’t tell us much regarding this, but at

the bottom it does give us the possible return values:

Remarks

The retval argument might be one of the following values:

swDocNONE - no document

swDocPART - part document

swDocASSEMBLY- assembly document

swDocDRAWING - drawing document

Starting SolidWorks Programming

62

Object Browser
Here is how I found out that the different type values I needed were

in the enumerator swDocumentType_e. If you are in VBA, go to

View->Object Browser or press F2, and if you are in .Net then go to

View->Other Windows->Object Browser. This will bring up a new

window that’s a bit like a search tool. From here you can look at all of

the properties and methods (functions) that any library object has. It

comes in handy when you simply need to search for a function as no

other help or documentation tells you what you need.

In the search box, type in any one of the values that the help file told

us was a possible return value, let’s use “swDocNONE” without

quotes.

Once you press enter

you will get the results.

Notice that only one

object contains this

exact text, and that

object is within the

SwConst library, under

swDocumentType_e.

And that is how we find

out where the values are

stored. Using this we

just compare the type

returned from the GetType function, with the drawing enumerator

value.

With a handle to the active drawing sheet, we get a list of all the

drawing sheets, activate each one and then save them as a DXF.

Starting SolidWorks Programming

63

C#

DrawingDoc swDrwDoc = (DrawingDoc)swModel;

string[] sheetNames = (string[])swDrwDoc.GetSheetNames();

string saveAsLocation = GetLocationFromUser();

foreach (string sheetname in sheetNames)

{

 // Activate and save drawing sheet here

}

VBA

Dim sheetNames As Variant

sheetNames = swModel.GetSheetNames()

Dim saveAsLocation As String

Dim sheetname As Variant

For Each sheetname In sheetNames

' Activate and save drawing sheet here

Next sheetname

Firstly if we use .Net, because our active document variable

swModel is of type ModelDoc2, we have to cast it to the specific

document type of DrawingDoc. This is done automatically in VBA.

With the DrawingDoc object, we get all of the sheet names of this

drawing by calling GetSheetNames. In .Net we cast this to an array

(collection) of strings (text values), which is basically a list of the

sheet names. In VBA we use the variable equivalent Variant.

Starting SolidWorks Programming

64

Next we call a function that will ask the user to specify a save

location for the DXF files that will be created. We will write this

function later.

Then, we use a For Each statement, which will loop all of the code

within its block for each item it finds within an array. So in this case

we loop through every sheet name in the collection of sheet names,

so that we can process each one.

Within the for each statement block, we write the code to firstly

activate the sheet, and secondly, save it as DXF.

C#

int lErrors = 0, lWarnings = 0;

bool bRet;

int eVersion = (int)swSaveAsVersion_e.swSaveAsCurrentVersion;

int eOptions = (int)swSaveAsOptions_e.swSaveAsOptions_Silent;

foreach (string sheetname in sheetNames)

{

 swDrwDoc.ActivateSheet(sheetname);

 bRet = swModel.Extension.SaveAs(saveAsLocation + sheetname +

".dxf", eVersion, eOptions, null, ref lErrors, ref lWarnings);

 if (!bRet)

 MessageBox.Show("Failed to save " + sheetname + " as DXF");

}

VBA

Dim lErrors As Long, lWarnings As Long

lErrors = lWarnings = 0

Starting SolidWorks Programming

65

Dim bRet As Boolean

Dim eVersion As Integer

Dim eOptions As Integer

eVersion = swSaveAsCurrentVersion

eOptions = swSaveAsOptions_Silent

Dim sheetname As Variant

For Each sheetname In sheetNames

 swModel.ActivateSheet sheetname

 bRet = swModel.Extension.SaveAs(sheetname & ".dxf", eVersion,

eOptions, Nothing, lErrors, lWarnings)

 If bRet = False Then MsgBox "Failed to save " & sheetname & " as

DXF."

Next sheetname

Within the for each loop we start by activating the current sheet we

are iterating through by calling the ActivateSheet function of the

DrawingDoc object, and passing the current sheet name as the

parameter.

Then, we call the SaveAs function just as we did in the previous

chapter, only this time instead of specifying a name ending in

“.sldprt”, we end it with “.dxf”. SolidWorks will automatically save

the file as a DXF without you needing to do anything else.

Starting SolidWorks Programming

66

As for the save location; once we get our path where the user would

like to save the file, we add the current sheet name and then the dxf

extension.

Get input from the user
The last piece of the puzzle is to write the GetLocationFromUser

function we called in the previous step. Remember to place functions

outside of other functions, but inside the main class. You may notice

I have not wrote a function for VBA as it is quite long winded to

explain at this stage.

In .Net, we can use a System library function to ask the user to select

a folder, and then return the selected location. We place the

terminating backslash to the path as the function we use leaves it

off.

public string GetLocationFromUser()

{

 FolderBrowserDialog folderBrowser = new FolderBrowserDialog();

 folderBrowser.ShowDialog();

 return folderBrowser.SelectedPath + @"\";

}

Creating a new instance of the FolderBrowserDialog class, we then

call the ShowDialog function which shows the standard Folder

Browser to the user for them to select a folder. Our code will not

continue until the user has closed this browser. Once it has returned,

we return the path that the user selected. If they clicked Cancel it will

return blank and so save in the same location as the drawing.

Starting SolidWorks Programming

67

Run your code and watch as the drawing sheet flicks between each

drawing sheet and saves as a DXF.

Note: At the time of

writing, SolidWorks still

has a bug in setting the

DXF properties to save

only the active sheet and

not all when we run the

SaveAs command, so I

left out the code for

setting up the DXF

options to save just the

active sheet. If your

output DXF files have all

the sheets within them, just go to manually save a drawing, select

DXF, and then click the Options button and make sure the last

setting is selected as Active Sheet Only.

Starting SolidWorks Programming

68

Getting Document Information
Some of the most important things you need to know before you can

create any sophisticated or complex code are filenames and

locations, titles, configuration name(s), the type of file, if we are in

read-only/view-only/large assembly mode, the material and/or

summary information.

Start with the usual template connecting into SolidWorks, and then

get a handle to the active model document using swApp.ActiveDoc

setting it to the swModel variable like in the last example. It is this

model handle we will be performing all our inspection on.

Filename and Location
Let’s start with getting the complete location and filename of the

active document, and then we will split this information into Path,

Filename and Extension.

If you are using C# or VB.Net, first add the following line to the

using/Imports section respectively to allow us to use functions from

the Input/Output library.

Using System.IO; or Imports System.IO

C#

string fullpath = swModel.GetPathName();

string filelocation = Path.GetDirectoryName(fullpath);

string filename = Path.GetFileNameWithoutExtension(fullpath);

string extension = Path.GetExtension(fullpath);

Starting SolidWorks Programming

69

Using VBA is quite a lot more work to achieve the same goal. Firstly,

we must create a function that will return the last position of string

within another string. Explaining this function is beyond the scope of

this book so if you wish to understand this function you can discuss it

on the AngelSix forum, but basically the concept is to find the last

occurrence of a certain character such as a period (.) to find the

extension, or a backslash (\) to find the directory.

VBA

Function LastIndexOf(stringToSearch As String, searchFor As String) As

Integer

Dim iPos As Integer

Dim iTemp As Integer

iPos = -1

iTemp = 0

Do Until iPos = 0

If iPos = -1 Then iPos = 0

iPos = InStr(iPos + 1, stringToSearch, searchFor)

If iPos <> 0 Then iTemp = iPos

Loop

iPos = iTemp - 1

LastIndexOf = iPos

End Function

Starting SolidWorks Programming

70

Now with this function at our disposal, it is still a bit messier than the

.Net version:

VBA

Dim fullname As String

Dim filelocation As String

Dim filename As String

Dim extension As String

fullname = swModel.GetPathName()

filelocation = Left(fullname, LastIndexOf(fullname, "\"))

Dim filenamewithext As String

filenamewithext = Right(fullname, Len(fullname) - Len(filelocation) - 1)

filename = Left(filenamewithext, LastIndexOf(filenamewithext, "."))

extension = Right(fullname, Len(fullname) - LastIndexOf(fullname, "."))

Title & Type of File
Getting the title is simple enough; this is the name that is displayed

in the windows explorer when you select to open it, so if you have

the windows option of displaying known file extensions (such as

.doc, .txt etc...) then the title will have the extension also.

You have already seen how to get the type of file from the previous

chapter, but not how to change the numeric value we got back into a

text or descriptive name for the user.

C#

string title = swModel.GetTitle();

Starting SolidWorks Programming

71

string filetype = ((swDocumentTypes_e)swModel.GetType()).ToString();

The title is self-explanatory. As for the file type; we start by calling

swModel.GetType(), which returns an integer value. From there we

cast it to the enumerator type swDocumentTypes_e, which will give

us an enumerator object, and then we simply convert that to a string

representation.

VBA

Dim title As String

Dim filetype As Integer

title = swModel.GetTitle()

filetype = swModel.GetType()

Due to its very limited powers VBA has no easy way to get a string

representation of an enumerator, so we simply get a number.

Obviously not much use for the user to see, but if you came to that

level anyway I would recommend using C# or VB.Net.

File/Model Modes
As well as titles and paths, we may need to know if the file we are

working on is capable of having itself altered and saved, or if we can

edit it or not. This is where file modes come in to play.

We will get all 3 file modes at once and store them in Boolean

variables:

Starting SolidWorks Programming

72

C#

bool bReadOnly = swModel.IsOpenedReadOnly();

bool bViewOnly = swModel.IsOpenedViewOnly();

bool bLargeMode = swModel.LargeAssemblyMode;

VBA

Dim bReadOnly As Boolean

Dim bViewOnly As Boolean

Dim bLargeMode As Boolean

bReadOnly = swModel.IsOpenedReadOnly()

bViewOnly = swModel.IsOpenedViewOnly()

bLargeMode = swModel.LargeAssemblyMode

Documents Material
Another piece of potentially useful information is the current

material that is set for the part. The material has several values; the

visible user-friendly name, and the internal ID.

C#

string materialName = swModel.MaterialUserName;

string materialID = swModel.MaterialIdName;

Starting SolidWorks Programming

73

VBA

Dim materialName As String

Dim materialID As String

materialName = swModel.MaterialUserName

materialID = swModel.MaterialIdName

That was easy enough wasn’t it? If you retrieve these values from an

assembly or drawing, or a part without a material set, you simply get

a blank string returned.

Configuration Names
Sometimes you may need the names of all configurations within a

part or assembly, for things such as retrieving preview images,

settings custom properties or printing.

C#

string[] configNames = (string[])swModel.GetConfigurationNames();

foreach (string configname in configNames)

{

 // Do anything with configname here

}

Here in the first line we create a new array of string values, and then

cast the object returned from the swModel function

GetConfigurationNames to the correct type.

Starting SolidWorks Programming

74

Then, to access each configuration name one by one, we use a

foreach loop.

And here is the VBA version:

VBA

Dim configNames As Variant

Dim configname As Variant

configNames = swModel.GetConfigurationNames()

For Each configname In configNames

 ' Do anything with configname here

Next

Summary Information
Mainly useful for tracking, searching or archiving, the summary

information is a powerful piece of information to have at your

disposal. The Summary Information is the information set in the

File->Properties form such as title, subject, author, keywords,

comments, saved by, creation date and save date.

The .Net versions may seem more complicated, but this is purely

because we are using an automated method, that will update itself

whenever the SolidWorks enumerator values change, whereas the

VBA version is simply a static code that may well become invalid:

Starting SolidWorks Programming

75

C#

string[] summmaryNames =

Enum.GetNames(typeof(swSummInfoField_e));

foreach (string summaryName in summaryNames)

{

 int sumId = (int)Enum.Parse(typeof(swSummInfoField_e),

summaryName);

 string summaryValue = swModel.get_SummaryInfo(sumID);

}

Firstly we get all of the names in the swSummaryInfoField_e

enumerator, which contains all of the ID values we need to retrieve

the values of the summary fields.

With the summary names (which will be Title, Subject, Author etc...),

we then go through them one at a time using another foreach loop

and call the swModel function get_SummaryInfo, which takes a

single parameter of an ID, which we retrieve by parsing the name of

the enumerator back to an actual enumerator, and then casting it

into an integer. This seems a bit messy but it is in fact about the only

way to automatically iterate through a set of enumerator values.

Now we access all the information we require through the

summaryName, sumID and summaryValue each time we enter the

loop.

In VBA, we cannot automatically get the names of an enumerator set

so we have to manually type each one in. Be warned this is not good

programming practise:

Starting SolidWorks Programming

76

VBA

Dim sumInfoTitle As String

Dim sumInfoSubject As String

Dim sumInfoAuthor As String

Dim sumInfoKeywords As String

Dim sumInfoComment As String

Dim sumInfoSavedBy As String

Dim sumInfoCreateDate As String

Dim sumInfoSaveDate As String

Dim sumInfoCreateDate2 As String

Dim sumInfoSaveDate2 As String

sumInfoTitle = swModel.summaryinfo(swSumInfoTitle)

sumInfoSubject = swModel.summaryinfo(swSumInfoSubject)

sumInfoAuthor = swModel.summaryinfo(swSumInfoAuthor)

sumInfoKeywords = swModel.summaryinfo(swSumInfoKeywords)

sumInfoComment = swModel.summaryinfo(swSumInfoComment)

sumInfoSavedBy = swModel.summaryinfo(swSumInfoSavedBy)

sumInfoCreateDate = swModel.summaryinfo(swSumInfoCreateDate)

sumInfoSaveDate = swModel.summaryinfo(swSumInfoSaveDate)

sumInfoCreateDate2 = swModel.summaryinfo(swSumInfoCreateDate2)

sumInfoSaveDate2 = swModel.summaryinfo(swSumInfoSaveDate2)

Starting SolidWorks Programming

77

Display Document Information
Now we have gathered all this useful information, it would be nice to

actually see it. We start by creating a multiline textbox to put the

information into, and then simply add all of the information

separated by a new line for each item.

In the .Net languages we already have a form created automatically

for us, and if you are using the template from the first chapter to run

this code, we already have a button, so all that is left is to add a

textbox. Go to the Form Designer by double-clicking the Form1.cs

file in the Solution Explorer. Now go to the Toolbox to the left and

this time instead of dragging a Button object on to our form we are

going to drag a TextBox object on.

Starting SolidWorks Programming

78

Now drag the textbox to any size you would like and position it as

such. Then making sure it is still selected, go to the Properties

Window to the right, and set the following properties:

And here is what my form looks like:

Now switch back to the coding of the form. Within the buttons event

handler function, we write the code to connect to SolidWorks and to

get the active document code, and then all of the code we have just

been writing above. It should all make sense if you have been

following along, and the only thing different is that instead of storing

the information in separate variables, we have simply made one

string variable that stores all of the values, separated by a new line.

Starting SolidWorks Programming

79

C#

try

{

 swApp =

(SldWorks.SldWorks)Marshal.GetActiveObject("SldWorks.Application");

}

catch

{

 MessageBox.Show("Error getting SolidWorks Handle");

 return;

}

swModel = (ModelDoc2)swApp.ActiveDoc;

if (swModel == null)

{

 MessageBox.Show("Failed to get active document");

 return;

}

string nl = System.Environment.NewLine;

string strInfo = "File Information" + nl;

string fullpath = swModel.GetPathName();

strInfo += "Full Path: " + fullpath + nl;

if (fullpath != string.Empty)

{

 strInfo += "Directory: " + Path.GetDirectoryName(fullpath) + nl;

 strInfo += "Filename: " + Path.GetFileNameWithoutExtension(fullpath)

+ nl;

Starting SolidWorks Programming

80

 strInfo += "Extension: " + Path.GetExtension(fullpath) + nl;

}

strInfo += "Title: " + swModel.GetTitle() + nl;

strInfo += "File Type: " +

((swDocumentTypes_e)swModel.GetType()).ToString() + nl;

strInfo += "Read-only: " + swModel.IsOpenedReadOnly().ToString() + nl;

strInfo += "View-only: " + swModel.IsOpenedViewOnly().ToString() + nl;

strInfo += "Large Assembly Mode: " +

swModel.LargeAssemblyMode.ToString() + nl;

strInfo += "Material Name: " + swModel.MaterialUserName + nl;

strInfo += "Material ID: " + swModel.MaterialIdName + nl;

strInfo += "Configuration Names" + nl;

string[] configNames = (string[])swModel.GetConfigurationNames();

foreach (string configname in configNames)

{

 strInfo += configname + nl;

}

strInfo += "Summary Info" + nl;

string[] summaryNames =

Enum.GetNames(typeof(swSummInfoField_e));

foreach (string summaryName in summaryNames)

{

 int sumID = (int)Enum.Parse(typeof(swSummInfoField_e),

summaryName);

 string summaryValue = swModel.get_SummaryInfo(sumID);

Starting SolidWorks Programming

81

 strInfo += summaryName + ": " + summaryValue + nl;

}

textBox1.Clear();

textBox1.Text = strInfo;

Any here is the finished result when you run the code:

Starting SolidWorks Programming

82

For VBA we do much the same thing; start by going to Insert->User

Form within the VBE. Then much like VS just drag a

CommandButton and a TextBox onto the form and from the

properties on the left, set the TextBox property MultiLine to True,

and change the Caption property of the button to whatever you

would like the button to say.

Starting SolidWorks Programming

83

Now double-click the button to create the event handler for the click.

Like VS we will place all of our code in here, and modify the module

containing the main() function

to simply open our form.

Start by editing the Macro1 file

module by double-clicking it in

the Project Explorer.

Within the main() function

place the following code to

Starting SolidWorks Programming

84

open the form upon running of the macro.

Sub main()

UserForm1.Show

End Sub

If you left the form Name property as default, then it will be called

UserForm1. If you do not get the IntelliSense menu popping up

when you press the period key after its name and before typing

Show, then you have the wrong name, so check the name property

of the form in the properties of the form designer.

Below this main subroutine we can place the LastIndexOf function

we created earlier, or we can put this in the form code. I have placed

it below the main for clarity.

Function LastIndexOf(stringToSearch As String, searchFor As String) As

Integer

Dim iPos As Integer

Dim iTemp As Integer

iPos = -1

iTemp = 0

Do Until iPos = 0

If iPos = -1 Then iPos = 0

iPos = InStr(iPos + 1, stringToSearch, searchFor)

If iPos <> 0 Then iTemp = iPos

Loop

Starting SolidWorks Programming

85

iPos = iTemp - 1

LastIndexOf = iPos

End Function

Now it s time to place all of our code for getting the information that

we wrote above into the event handler function of the button that

was created earlier, so that the information will be shown in the

textbox when the

user clicks the

button. To get

back to the coding

window with the

button event

handler just right-

click the

UserForm1 item in

the Project

Explorer and select

View Code.

VBA

Dim strInfo As String

Private Sub CommandButton1_Click()

Set swApp = GetObject("", "SldWorks.Application")

If swApp Is Nothing Then

Starting SolidWorks Programming

86

MsgBox "Error gettings SolidWorks Handle"

Exit Sub

End If

Set swModel = swApp.ActiveDoc

If swModel Is Nothing Then

MsgBox "Failed to get active document"

Exit Sub

End If

Dim fullname As String

Dim filenamewithext As String

Dim filelocation As String

AddToStr "File Information"

fullname = swModel.GetPathName()

AddToStr "Full Path: " & fullname

If fullname <> "" Then

filelocation = Left(fullname, LastIndexOf(fullname, "\"))

AddToStr "Directory: " & filelocation

filenamewithext = Right(fullname, Len(fullname) - Len(filelocation) - 1)

AddToStr "Filename: " & Left(filenamewithext,

LastIndexOf(filenamewithext, "."))

AddToStr "Extension: " & Right(fullname, Len(fullname) -

LastIndexOf(fullname, "."))

End If

AddToStr "Title: " & swModel.GetTitle()

Starting SolidWorks Programming

87

AddToStr "File Type: " & swModel.GetType()

AddToStr "Read-only View: " & swModel.IsOpenedReadOnly()

AddToStr "View-only View: " & swModel.IsOpenedViewOnly()

AddToStr "Large Assembly Mode: " & swModel.LargeAssemblyMode

AddToStr "Material Name: " & swModel.MaterialUserName

AddToStr "Material ID: " & swModel.MaterialIdName

AddToStr "Configuration Names"

configNames = swModel.GetConfigurationNames()

Dim configname As Variant

For Each configname In configNames

 AddToStr CStr(configname)

Next

AddToStr "Summary Information"

AddToStr "Title: " & swModel.summaryinfo(swSumInfoTitle)

AddToStr "Subject: " & swModel.summaryinfo(swSumInfoSubject)

AddToStr "Author: " & swModel.summaryinfo(swSumInfoAuthor)

AddToStr "Keywords: " & swModel.summaryinfo(swSumInfoKeywords)

AddToStr "Comment: " & swModel.summaryinfo(swSumInfoComment)

AddToStr "Saved By: " & swModel.summaryinfo(swSumInfoSavedBy)

AddToStr "Creation Date: " &

swModel.summaryinfo(swSumInfoCreateDate)

AddToStr "Save Date: " & swModel.summaryinfo(swSumInfoSaveDate)

AddToStr "Creation Date 2: " &

swModel.summaryinfo(swSumInfoCreateDate2)

Starting SolidWorks Programming

88

AddToStr "Save Date 2: " &

swModel.summaryinfo(swSumInfoSaveDate2)

TextBox1.Text = ""

TextBox1.Text = strInfo

End Sub

Sub AddToStr(info As String)

strInfo = strInfo & info & vbCr

End Sub

* Find the complete C#, VBA and VB.Net examples on the CD if you

have any troubles.

89

Working with Selected Objects

Identifying Selected Objects

Mating Selected Objects

Setting Material of Selected Objects

Manipulate Dimension

Selecting Objects

Working with Selected Objects

90

Another major need for any good SolidWorks programmer is the

ability to work with and manipulate the selected objects. And the

first task once you obtain the selection is to identify it, so you know

how to proceed.

Indentifying Selected Objects
When you run a macro or program and the user has previously

selected objects, you may wish to either clear them all so it doesn’t

affect your program, or to use the selection. If you wish to clear the

selected objects you call:

C#

swModel.ClearSelection2(true);

VBA

swModel.ClearSelection2 True

Now, say you wanted to actually use the selected objects that the

user has picked to do something. We must identify each of these

selections and make sure that they are of the correct type, and in

some cases, even in the correct order. I am going to show you how to

identify the selected objects of an assembly, add a coincident mate

and then error check.

Start with the usual template or whichever one you please, and

connect to SolidWorks and get the active document as usual.

If we are to work with selections we must add another variable to our

program. Please this in the same location as the swApp and

Working with Selected Objects

91

swModel variables and call it swSelMgr (short for Selection

Manager), and make it of type SelectionMgr.

C#

SelectionMgr swSelMgr;

VBA

Dim swSelMgr As SelectionMgr

Next, after we have successfully acquired the active document, we

then get the SelectionManager of that document. We use this

object for getting all our information about and handles to the

selected objects.

C#

swSelMgr = (SelectionMgr)swModel.SelectionManager;

 VBA

Set swSelMgr = swModel.SelectionManager

Now we must check that the active document is an assembly, and if

so, get the selected objects and check that they are of the correct

type. For this example we are only going to allow mating of Faces,

Edges and Vertices. We will create a better selection process later

using the Property Pages.

Working with Selected Objects

92

C#

if (swModel.GetType() != (int)swDocumentTypes_e.swDocASSEMBLY)

{

 MessageBox.Show("Can only add mate in an assembly");

 return;

}

if (swSelMgr.GetSelectedObjectCount2(-1) != 2)

{

 MessageBox.Show("You must select 2 entities, no more, no less");

 return;

}

else

{

 int selID1 = swSelMgr.GetSelectedObjectType3(1, -1);

 int selID2 = swSelMgr.GetSelectedObjectType3(2, -1);

 if ((selID1 != (int)swSelectType_e.swSelEDGES && selID1 !=

(int)swSelectType_e.swSelFACES && selID1 !=

(int)swSelectType_e.swSelVERTICES)

 || (selID2 != (int)swSelectType_e.swSelEDGES && selID2 !=

(int)swSelectType_e.swSelFACES && selID2 !=

(int)swSelectType_e.swSelVERTICES))

 {

 MessageBox.Show("You must select only edges, faces or

vertices");

 return;

 }

}

Working with Selected Objects

93

 Here we first check the type of document that is active. You have

seen this before so if you need an explanation return to the previous

chapter. Then we use a function of the acquired selection manager

called GetSelectionObjectCount2; this returns an integer value

representing the number of objects that are selected by the user.

Because we are doing a coincident mate we want exactly two.

Next we call another selection manager function called

GetSelectedObjectType3, which accepts one parameter which is

the selected object to get the type for. We get the type value for

each of the 2 selected items, and then check them against the

enumerator values for Faces, Edges and Vertices. If either of the two

objects is not one of the allowed selected type then we stop and

warn the user.

&& = AND

|| = OR

If we pass all of the above criteria we know we are in SolidWorks,

with an assembly open, and 2 entities selected. We could take this

further and check that the selected objects components are different

so we are not trying to mate an object to itself, but for now this will

do us.

Working with Selected Objects

94

Mating Selected Objects
All that is left to do now is attempt to apply a coincident mate

between the 2 selected entities and check for success.

If the operation succeeds, SolidWorks by default when

programmatically adding a mate does not deselect the selected

entities after, but the user operation does. So, in an attempt to act

more like an actual user mate procedure, we will deselect the entities

once the mate has been made.

int iErrors;

((AssemblyDoc)swModel).AddMate3(

 (int)swMateType_e.swMateCOINCIDENT,

 (int)swMateAlign_e.swMateAlignCLOSEST,

 false, 0, 0, 0, 0, 0, 0, 0, 0, false,

 out lErrors);

if (iErrors != (int)swAddMateError_e.swAddMateError_NoError)

{

 MessageBox.Show("Error mating components: " +

((swAddMateError_e)iErrors).ToString());

}

else

{

 swModel.ClearSelection2(true);

}

If you read the SolidWorks API help file for

AssemblyDoc::AddMate3 you will see that the only parameters that

Working with Selected Objects

95

matter for us are the first 3 and the last 2. After we cast our

ModelDoc2 swModel variable to an AssemblyDoc variable we can

use this function.

Mate Type, Mate Alignment, Flip, Positioning Only,

Error variable

We select the correct type and alignment from the enumerator

options the help file tells us about, tell it not to flip the components,

not to create a positioning-only mate, and we pass a variable for

storing our errors.

Once it has run we check for errors by comparing the resultant

variable with the swAddMateError_NoError value from the errors

enumerator, and if we have an error, convert it to a readable string

and display it.

Once you have done, test your program.

Doing this in VBA is exactly the same, only we would have to

manually state each error again for each enumerator value like

before as VBA cannot easily, if at all, convert enum to strings at

runtime.

 VBA

Set swSelMgr = swModel.SelectionManager

If swModel.GetType() <> swDocumentTypes_e.swDocASSEMBLY Then

MsgBox "Can only add mate in an assembly"

Exit Sub

End If

If swSelMgr.GetSelectedObjectCount2(-1) <> 2 Then

Working with Selected Objects

96

 MsgBox "You must select 2 entities, no more, no less"

 Exit Sub

Else

 Dim selID1 As Integer

 Dim selID2 As Integer

 selID1 = swSelMgr.GetSelectedObjectType3(1, -1)

 selID2 = swSelMgr.GetSelectedObjectType3(2, -1)

 If (selID1 <> swSelEDGES And selID1 <> swSelFACES And selID1

<> swSelVERTICES) Or (selID2 <> swSelEDGES And selID2 <>

swSelFACES And selID2 <> swSelVERTICES) Then

 MsgBox "You must select only edges, faces or vertices"

 Exit Sub

 End If

End If

Dim iErrors As Long

swModel.AddMate3 swMateCOINCIDENT, swMateAlignCLOSEST,

False, 0, 0, 0, 0, 0, 0, 0, 0, False, iErrors

If iErrors <> swAddMateError_NoError Then

 Dim errortext As String

 errortext = Switch(iErrors = 0, "Error Unknown", iErrors = 2, "Incorrect

Mate Type", iErrors = 3, "Incorrect Alignment", iErrors = 4, "Incorrect

Selection", iErrors = 5, "Over Defined Assembly", iErrors = 6, "Incorrect

Gear Ratios")

 MsgBox "Error mating component: " & errortext

Else

 swModel.ClearSelection2 True

End If

Working with Selected Objects

97

In VBA, we have had to specify each error value and its

corresponding string value. For this we use a Switch statement; it

works by returning the variable after the first value that returns true.

So in this case, we check if “iErrors = 0”, if it does it returns the

variable after that, which is “Error Unknown”, if it is false, it carries

on until it finds one.

Working with Selected Objects

98

Settings Material of Selected Objects
As well as mating, you can do almost anything with the selected

objects. This quick example will show you that by selecting any edge,

face, vertex, plane, sketch or part itself, that we can find its

associated component, and set its material.

This code presumes you have already connected to SolidWorks, got

the active document and obtained the SelectionManager object,

and SolidWorks has an assembly already open and you have checked

that the user has pre-selected at least one object.

You know how to check for the number of selected objects and their

types now so I will just get down to the raw code of getting a handle

to the Component of the selected object, and setting its material.

C#

string materialDB = "solidworks materials.sldmat";

string material = "Ductile Iron";

for (int i = 1; i <= swSelMgr.GetSelectedObjectCount2(-1); i++)

{

 Component2 comp =

(Component2)swSelMgr.GetSelectedObjectsComponent3(i, -1);

 if (comp != null)

 {

 ModelDoc2 model = (ModelDoc2)comp.GetModelDoc();

 if (model.GetType() == (int)swDocumentTypes_e.swDocPART)

 ((PartDoc)model).SetMaterialPropertyName2("", materialDB,

material);

Working with Selected Objects

99

 }

}

swModel.EditRebuild3();

Firstly we specify the materials database to use; either a custom

database or the default SolidWorks database. Secondly we specify

the material from that library that we wish to set all selected parts

to.

Now we create a loop for every selected object. Within that loop we

firstly get the component that is associated with this selected object.

The GetSelectedObjectsComponent3 function accepts the

selection index, which we pass each time. All the function does is

simply jump up the feature tree until hitting a Component object, so

no matter what item or feature of a part you select, this function will

get its component.

Before we continue, we check the function actually returned one,

and then if did we get the ModelDoc2 object associated with that

component, as we cannot set a material value to a component, it has

to be to the document of the component (i.e. the part/assembly).

With a ModelDoc2 object to work with, it is just a case of checking its

type to make sure it is a part, and then setting its material properties

using SetMaterialPropertyName2. This function takes in the

configuration name, material database and material name. In this

example we pass a blank configuration name so it sets it in the active

configuration. And then finally with all selected items processed we

do a rebuild of the assembly to update the parts.

Working with Selected Objects

100

Doing this procedure in VBA is no different and due to the looseness

of the language it actually looks a bit simpler in comparison as we do

not need any casting.

VBA

Dim materialDB As String

Dim material As String

materialDB = "solidworks materials.sldmat"

material = "Ductile Iron"

Dim i As Integer

For i = 1 To swSelMgr.GetSelectedObjectCount2(-1)

 Dim comp As Component2

 Set comp = swSelMgr.GetSelectedObjectsComponent3(i, -1)

 If Not comp Is Nothing Then

 Dim model As ModelDoc2

 Set model = comp.GetModelDoc()

 If model.GetType() = swDocPART Then

 model.SetMaterialPropertyName2 "", materialDB, material

 End If

 End If

Next

swModel.EditRebuild3

Working with Selected Objects

101

Manipulating Dimensions
One of the major features of any 3D software package is dimensions,

and even through altering them through code it as simple as 1-2-3,

here is a quick code snippet of how to double the value of the

selected dimension. Again, presuming you are up to the point of

having a working selection manager and the user has selected a

dimension.

C#

if (swSelMgr.GetSelectedObjectCount2(-1) == 0)

{

 MessageBox.Show("You must select one or more objects");

 return;

}

if (swSelMgr.GetSelectedObjectType3(1, -1) !=

(int)swSelectType_e.swSelDIMENSIONS)

{

 MessageBox.Show("You must select a dimension");

 return;

}

DisplayDimension dispDim =

(DisplayDimension)swSelMgr.GetSelectedObject6(1, -1);

Dimension dim = (Dimension)dispDim.GetDimension2(0);

if (dim.DrivenState !=

(int)swDimensionDrivenState_e.swDimensionDriving || dim.ReadOnly)

{

Working with Selected Objects

102

 MessageBox.Show("Dimension cannot be altered");

 return;

}

double[] oldVals =

(double[])dim.GetSystemValue3((int)swInConfigurationOpts_e.swThisCo

nfiguration, null);

oldVals[0] *= 2;

int retVal = dim.SetSystemValue3(oldVals[0],

(int)swInConfigurationOpts_e.swThisConfiguration, null);

if (retVal != (int)swSetValueReturnStatus_e.swSetValue_Successful)

{

 MessageBox.Show("Error setting dimension: " +

((swSetValueReturnStatus_e)retVal).ToString());

}

swModel.EditRebuild3();

 We start by checking that the user has selected an item. If they have

we check that the selection is of type swSelDimensions before

proceeding to attempt to alter it.

Once we know we have a dimension selected, we get it using

GetSelectedObject6 and pass 1 as the index to retrieve the first

selected object, and just ignore any more after that.

In order to get and set dimension values we must get the actual

Dimension object, not the DisplayDimension that is retrieved by

the user selection. We use the DisplayDimension method

Working with Selected Objects

103

GetDimension2 to achieve this; passing 0 into this function gets the

first chamfer dimension and 1 gets the second if you have multiple

dimension display. In this example we are working with single

dimensions, so just pass 0.

Next, we check that the dimension is not read-only or driven; else we

will not be able to alter it.

With everything OK up to this point, we now want to perform our

operation; double the original size. Firstly we start by getting the

system value, which is the actual fully evaluated value of the

dimension. If you have tolerances then you will retrieve multiple

dimensions, so you must loop them and handle them how you like,

but for now this example will only alter the first dimension.

To get the system value we use the Dimension function

GetSystemValue3, which takes two parameters; the first is the

configuration to get the value from, which is an enumerator, and the

second is the actual configuration names if we use the enumerator

value for specific configurations. In our example we do not need this

so we pass null. The return type is a double array (a variable

containing zero or more numbers) regardless of retrieving a single

value or multiple, so we set our double array variable to the result.

Now with the original values in an array, we access the first value in

that array and multiply it using the statement:

oldVals[0] *= 2;

Which could be written out the long way like this:

oldVals[0] = oldVals[0] * 2;

Working with Selected Objects

104

With the value doubled we must now set this new value back to the

dimension. We do this with the equivalent function

SetSystemValue3. This however accepts a single double value not

an array, so we pass the first value of our array as the first parameter,

and then the enum for this configuration again, and null for the

configuration names. This function returns an error checking

enumerator value, so we retrieve this like any other function we have

checked before and then check it against the successful enum value.

If it is not successful something went wrong so we display the error

by casting the integer return value back to an enumerator value, and

then to a readable string.

Finally, with the dimension successfully altered or not, we do a

rebuild of the document.

This code will work on assemblies, parts and drawings, provided the

dimension is alterable.

The VBA is exactly the same except the usual lack of enum names,

and no need to cast any objects.

VBA

If swSelMgr.GetSelectedObjectCount2(-1) = 0 Then

 MsgBox "You must select one or more objects"

 Exit Sub

End If

If swSelMgr.GetSelectedObjectType3(1, -1) <> swSelDIMENSIONS

Then

 MsgBox "You must select a dimension"

 Exit Sub

End If

Working with Selected Objects

105

Dim dispDim As DisplayDimension

Dim ddim As Dimension

Set dispDim = swSelMgr.GetSelectedObject6(1, -1)

Set ddim = dispDim.GetDimension2(0)

If ddim.DrivenState <> swDimensionDriving Or ddim.ReadOnly Then

 MsgBox "Dimension cannot be altered"

 Exit Sub

End If

Dim oldVals As Variant

oldVals = ddim.GetSystemValue3(swThisConfiguration, Nothing)

oldVals(0) = oldVals(0) * 2

Dim retVal As Integer

retVal = ddim.SetSystemValue3(oldVals(0), swThisConfiguration,

Nothing)

If retVal <> swSetValue_Successful Then

 MsgBox "Error setting dimension"

End If

swModel.EditRebuild3

And there you have it! Hopefully by now you are getting the hang of

things. Once you know the basics such as casting objects to the

correct value in .Net languages, and retrieving enumerator values

Working with Selected Objects

106

and checking them for errors and the likes, the procedure is pretty

much the same for all functions and properties.

The main problem with the SolidWorks API documentation is its lack

of explanations in regards to these topics, but now you know how to

convert enumerators, integers, double arrays, ModelDoc2 to any of

the 3 children AssemblyDoc, PartDoc and DrawingDoc, as well as

converting errors into messages and other techniques, you should be

well on your way.

Working with Selected Objects

107

Selecting Objects
One more thing I would like to cover before we move on is how you

actually select objects within your code. Because there are many

different ways of doing this and it all comes down to your situation, I

will just list the single lines of code you use to select specific objects.

We will encounter some of them later in the book, but they are

simple enough to understand.

ModelDocExtension::SelectByID2
In order to select almost any object from any location, you can use

the universal SelectByID2 of ModelDocExtension of ModelDoc2,

where you pass the fully qualified name of the entity you would like

to select. This name is based on the location of the entity within the

ModelDoc2 object that you are calling the function from. The best

way to find your required ID name is to record a macro selecting the

part you would like.

The definition is as follows:

retval = ModelDocExtension.SelectByID2 (Name, Type,

X, Y, Z, Append, Mark, Callout, SelectOption)

Name String

Type String

X, Y, Z Double

Append Boolean

Mark Integer

Callout Pointer

SelectOption Enumerator (Integer)

Working with Selected Objects

108

The Name is the fully qualified name of the object to select that I will

explain further in a second.

The Type is the string name of the type of entity you are going to

select. If you take a look at the help it will give you all of the types.

The X, Y and Z positions are used if you wish to select by position

instead of the name.

The Append is used to tell SolidWorks whether you intend to add

this selection to the currently already selected objects or not, and if

this exact object is already selected, whether to deselect it.

The Mark is used if we are setting marks to selections, which is

beyond the scope of this book.

The Callout is used mainly in add-ins and again is beyond this book.

Finally, the SelectOption is an enumerator of type

swSelectOption_e; you can basically pick either Default, or

Extensive.

In order to select anything by its ID, in most cases you need the fully

qualified name. In order to work out this name you must follow the

following format:

 [Name]@[Feature Name]@[Part]-[InstanceID]@[Top-

Level Assembly]/[SubAssembly]-[InstanceID]@[Bottom-

Level Assembly]

Omitting any field that you don't need. Here are a few examples:

Working with Selected Objects

109

From an assembly, selecting a parts thickness dimension

Part.Extension.SelectByID2("Thickness@Sheet-Metal1@0Bracket-

1@MachineContainer", "DIMENSION", ...

Where
Thickness = Dimension name

Sheet-Metal1 = Feature Name

Bracket-1 = Part Name & Instance ID

MachineContainer = Assembly Name

The model used above was an assembly called MachineContainer

with a part within it called Bracket. That bracket was a sheet metal

part (hence the Sheet-Metal1 feature), with a dimension of the

sheet metal feature called Thickness. The -1 after the bracket is

because in assemblies you need a way to know which part to select if

there are multiple instances. The instance in SolidWorks is the

number after the part within the angled brackets (<>).

From an assembly, selecting a top-level planes offset

dimension from the top level

Part.Extension.SelectByID2("Web Thickness@Web Thickness

Offside@MachineContainer", "DIMENSION", ...

Where
WebThickness = Dimension name

Web Thickness Offset = Plane Name

MachineContainer = Assembly Name

Working with Selected Objects

110

From an assembly, selecting a sub-assemblies parts

plane

Assembly->SubAssembly->SubAssembliesPart->PartsPlane

Part.Extension.SelectByID2("Front Centre@Generic 01CS-015-1@01

Bed Plate/Generic 01CP-035-1@Generic 01CS-015", "PLANE", ...

Where
Front Centre = Feature Name (Plane)

Generic 01CS-015-1 = Part Name & Instance ID

01 Bedplate = Top-Level Assembly

/Generic 01CP-035-1 = Sub-Assembly & Instance ID

Generic 01CS-015 = Bottom-Level Assembly

The Part variable in all of these

examples is the ModelDoc2 object

acquired for the model that the title

states, such as “From an assembly....”

The best way to learn about this

function is trial and error, and to record

macros to select what you want and see

the results.

Working with Selected Objects

111

Selecting specific objects
The alternate method to using the universal function is to use

specific functions for the object you wish to select. This could be an

annotation, a body, a component, an edge, a feature, a document

(assembly/part/drawing), a sketch etc...

Find below a list of methods to use for each type of object to select.

You should by now be able to figure out from the API reference, how

to pass the correct parameters. As for actually getting a handle to

the object in the first place; we will cover some of them in the next

chapter.

Annotation Annotation::Select3

Body Body2::Select2

BreakLine BreakLine::Select

Component Component2::Select3

Configuration Configuration::Select2

Edge Point EdgePoint::Select

Entity Entity::Select4

Feature Featur::Select2

Sketch Contour SketchContour::Select2

Sketch Hatch SketchHatch::Select4

Sketch Point SketchPoint::Select4

Sketch Segment SketchSegment::Select4

Working with Selected Objects

112

Setting a Selection Filter
As you saw in the previous example we allowed the user to select

anything first, and then check there selection after. A much better

way is to limit the users’ selection beforehand, and then tell them to

select their objects, and then run the code. Unfortunately this is not

easy to demonstrate the natural flow of setting the selection filter,

getting the selection, and then once they have selected, carrying on

with your code. The following function is usually used in add-ins or

full-blown applications with a user interface. I intend to cover this

subject in the future perhaps on a dedicated add-ins book.

However, just for knowledge, in order to limit the users’ selection

you call the following function:

void SldWorks.SetSelectionFilter (selType, state)

selType Enumerator (swSelectType_e)

state Boolean

The state variable determines whether or not to enable/disable that

selection, to allow or deny the user from selecting it. The selType is

an enumerator that can be stacked to select multiple options. An

example to enable the user to select bodies and edges would be:

C#
swApp.SetSelectionFilter(swSelectType_e.swSelFACES |

swSelectType_e.swSelEDGES);

VBA
swApp.SetSelectionFilter swSelFACES Or swSelEDGES

113

Property Manager Pages

Deriving the base class

Adding items to the Page

Responding to events

Property Manager Pages

114

Many of you who have already attempted to create Property

Manager Pages from the provided documentation of SolidWorks

have probably not understood 90% of the code, but rather done

what the documentation has told you, accepted it as the way to

create a page, and modified the bits you want to work with in the

hopes that it will work. Am I correct?

Well now, prepare to go through step-by-step every stage of

creating a PMP in VBA and the .Net languages. I will take you

through each stage, explaining along the way the reason for every

part of the code, and how to do many things with a property

manager page.

You can treat PMP’s more like forms in the way that you can have

your code working from events instead of loops and straight through

until completion. You can run some initialisation code, wait for the

user to select components and click a button, and then react to that.

Sound exciting? Let’s get started.

Deriving the base class
In order to create a PMP we must first create a class. This class is

created based on the template of a PMP called an abstract class; this

means that before we can create a page we must create an object

(class) that has all the required properties and functions required by a

PMP. By “deriving” from this base PMP class, it ensures that our new

class has all of these required properties and methods. Think of it as

if you want to create a new car, called the SuperFly, you cannot start

by creating a new car with 3 square wheels, and no steering wheel.

You have got to follow certain rules such as having 3-4 wheels,

containing doors to get in, and having certain safety factors. These

rules would be put inside a base abstract class called Car for

Property Manager Pages

115

example, to ensure that any car created will follow these basic rules.

We would derive our SuperFly car class from the base Car class, so

that it inherited, and was forced to follow, these base rules.

In the case of our Property Manager Page, we are going to create a

new page, called MyFirstPMP that is derived from the base PMP

class, which is actually called PropertyManagerPage2Handler5.

When you derive from a base class, your new class first needs to

state that it is deriving from that class, and secondly you must create

all of the functions that the base class asks you too. So, we are going

to create a new class, derive from the PMP base class, and specify all

of the required blank functions.

Start by creating a new project in.Net from the normal template with

the button to start the code, and go to the coding view. Add the

following using code:

using SWPublished;

This will allow us to access the base PMP class.

Now create a new class outside of the main form class but inside the

namespace, and call it MyFirstPMP. Now for the important part;

after the class name, but before the opening curly braces, place a

colon (:), followed by the name of the base class to derive from, in

this case PropertyManagerPage2Handler5.

Now we must implement all of the required functions of this base

class, luckily .Net provides a method to do this for us; right-click on

the base class name, and from the menu select Implement Interface

-> Implement Interface:

Property Manager Pages

116

This will automatically generate you all of the required functions of

the base class. Trust me this is a life saver in cases like this with over

30 functions!

You will also notice that within each function there is one line of code

throwing an error to the system. This is inserted by default and when

the function is called it will throw a system error stating that the

function is not yet implemented. This is not the functionality we

want as we don’t really care if some functions are not implemented.

So remove that line of code to be left with empty functions. The end

result looks like this:

C#

public class MyFirstPMP : PropertyManagerPage2Handler5

{

 #region IPropertyManagerPage2Handler5 Members

Property Manager Pages

117

 public void AfterActivation(){}

 public void AfterClose(){}

 public int OnActiveXControlCreated(int Id, bool Status) { return

(int)swHandleActiveXCreationFailure_e.swHandleActiveXCreationFailure

_Cancel; }

 public void OnButtonPress(int Id){}

 public void OnCheckboxCheck(int Id, bool Checked){}

 public void OnClose(int Reason){}

 public void OnComboboxEditChanged(int Id, string Text){}

 public void OnComboboxSelectionChanged(int Id, int Item){}

 public void OnGroupCheck(int Id, bool Checked){}

 public void OnGroupExpand(int Id, bool Expanded){}

 public bool OnHelp(){}

 public bool OnKeystroke(int Wparam, int Message, int Lparam, int

Id){}

 public void OnListboxSelectionChanged(int Id, int Item){}

 public bool OnNextPage(){}

 public void OnNumberboxChanged(int Id, double Value){}

 public void OnOptionCheck(int Id) { }

 public void OnPopupMenuItem(int Id) { }

 public void OnPopupMenuItemUpdate(int Id, ref int retval) { }

 public bool OnPreview() { }

 public bool OnPreviousPage() { }

 public void OnSelectionboxCalloutCreated(int Id) { }

 public void OnSelectionboxCalloutDestroyed(int Id) { }

 public void OnSelectionboxFocusChanged(int Id) { }

 public void OnSelectionboxListChanged(int Id, int Count) { }

 public void OnSliderPositionChanged(int Id, double Value) { }

 public void OnSliderTrackingCompleted(int Id, double Value) { }

Property Manager Pages

118

 public bool OnSubmitSelection(int Id, object Selection, int SelType, ref

string ItemText){}

 public bool OnTabClicked(int Id){}

 public void OnTextboxChanged(int Id, string Text) { }

 public void OnUndo(){}

 public void OnWhatsNew(){}

 #endregion

}

I have moved the curly braces up to the same line instead of on new

lines to save space in the coding; it just makes for easier reading.

Some functions you have to add a return statement for as they

require feedback, but since we won’t be using them in this book just

type what you see. I will explain some functions later on and explain

the return values and what they mean, but for now just accept what

is written and write your code the same.

The #region and #endregion are Visual Studio styling tags, they are

nothing to do with the program code and do not get compiled when

you create your program. Their function is to tidy up your code.

Anything within the #region/#endregion block can be expanded

and collapsed using the + and – box to the left of the #region tag.

This is very useful when your code gets long in order to keep it tidy.

Before we move on, let’s create the same coding but in VBA. Start by

creating the usual VBA template that connects to SolidWorks, and

acquires the active document. Then leave the main function like that

for now.

Property Manager Pages

119

Go to Insert->Class Module to insert a new class coding file. Open

up this class in the coding window if not already, by expanding the

Class Module folder and double-clicking the Class1 file. This should

display a blank file in the coding window.

Before we start writing our code in here let me explain exactly where

we are now; if this were C#, we would effectively be within the

following code block:

public class MyFirstPMP :

PropertyManagerPage2Handler5

{ // We are here! }

The slight difference in VBA is that although we are effectively within

the class when typing our code in the coding window, we do not

specify the base class outside of the braces (because there aren’t

any), but inside the class. So, inside our class file code we now want

to start by letting it know we are deriving from the

PropertyManagerPage2Handler5 base class. Place this code at the

first line of your class file:

VBA

Implements PropertyManagerPage2Handler5

Now, unlike .Net languages VBA does not have the power to

automatically create all of the required base functions for us, but

don’t panic! It does have a semi-automated method. In the coding

window, notice the 2 drop-down boxes right above the first line of

code. The one on the left is the Object Box, and the one on the right

is the Procedures/Events Box.

Property Manager Pages

120

Procedures is yet another word for a function or a method or a

subroutine; each language uses its own term but they all mean

exactly the same, unless you want to get pedantic and state that a

subroutine should not return a value whereas all others can, but I

wasn’t going to say anything.

Property Manager Pages

121

Creating the base functions in VBA
OK, so how do we semi-automatically create all of the required

functions of our base class? Fairly easily; drop down the Object Box

above your code to list all of the objects that are related to this class.

Select the base class PropertyManagerPage2Handler5.

This will populate the Procedures Box to the right, and have inserted

a single function for you.

Private Sub

PropertyManagerPage2Handler5_OnClose(ByVal Reason As

Long)

End Sub

What has happened here is that whenever you select an item from

the Procedure Box to the right, VBA will create an empty function

for that item if it doesn’t exist, and because by selecting the base

class from the Object Box populates the Procedure Box to the right,

it has selected the first item in its new list by default, and so create

an empty function for it.

Property Manager Pages

122

Now we need an empty procedure for all of the base class functions

for this to work so from the Procedure Box just go through one by

one and select each and every item in the list.

Once you have selected an item it will turn bold indicating there is

already a function for it, so selecting it again will just take you to it.

Select all items so they are all bold and then you will have the

following code:

Property Manager Pages

123

VBA

Implements PropertyManagerPage2Handler5

Private Sub PropertyManagerPage2Handler5_AfterActivation()

End Sub

Private Sub PropertyManagerPage2Handler5_AfterClose()

End Sub

Private Function

PropertyManagerPage2Handler5_OnActiveXControlCreated(ByVal Id As

Long, ByVal Status As Boolean) As Long

End Function

Private Sub PropertyManagerPage2Handler5_OnButtonPress(ByVal Id

As Long)

End Sub

Private Sub PropertyManagerPage2Handler5_OnCheckboxCheck(ByVal

Id As Long, ByVal Checked As Boolean)

End Sub

Private Sub PropertyManagerPage2Handler5_OnClose(ByVal Reason

As Long)

End Sub

Private Sub

PropertyManagerPage2Handler5_OnComboboxEditChanged(ByVal Id

As Long, ByVal Text As String)

End Sub

Property Manager Pages

124

Private Sub

PropertyManagerPage2Handler5_OnComboboxSelectionChanged(ByVa

l Id As Long, ByVal Item As Long)

End Sub

Private Sub PropertyManagerPage2Handler5_OnGroupExpand(ByVal Id

As Long, ByVal Expanded As Boolean)

End Sub

..

..

Private Function

PropertyManagerPage2Handler5_OnSubmitSelection(ByVal Id As Long,

ByVal Selection As Object, ByVal SelType As Long, ItemText As String)

As Boolean

End Function

Private Function PropertyManagerPage2Handler5_OnTabClicked(ByVal

Id As Long) As Boolean

End Function

Private Sub

PropertyManagerPage2Handler5_OnTextboxChanged(ByVal Id As

Long, ByVal Text As String)

End Sub

Property Manager Pages

125

I have cut out the middle code as I am sure you get the point. With

our new class created we are ready to create a new instance of it (a

variable of it), and then call a function of the class to tell it to show.

In .Net we must first add another function to our PMP class; add the

following function before all of the base class functions:

C#

public void Show(SldWorks.SldWorks swApp)

{

}

Now we can call this function from our main function that connects

to SolidWorks. Go back to the main function of our code (the place

where we connected to SolidWorks, in .Net this is usually the button

click event). In our main function, after we have got the active

document, we want to create a new instance of our class and call a

method to tell it to initialise and show the PMP.

C#

MyFirstPMP myPMP = new MyFirstPMP();

myPMP.Show(swApp);

What this does is create a new variable of type MyFirstPMP, which is

the name of our PMP class we created previously. The instance of

this class (the variable) is called myPMP, call it whatever you want.

We then assign the variable as a new instance of our class. Finally we

call the instances function that we just declared in the class called

Property Manager Pages

126

Show; this will run whatever code we place within the Show function

of our class and pass in the active SolidWorks Application variable.

As far as our main code is concerned we are now done, all that

remains is to do something with our Property Manager Page. But

before we do that, let’s run over the VBA coding too.

Open the class module code. After the first line:

VBA

Sub Show(Dim swApp As SldWorks.SldWorks)

End Sub

We can call this function from our main function that connects to

SolidWorks. Back to the main function in our main module, after we

have acquired the active document, we want to create a new

instance of our class and call the Show function.

By default our class is called Class1. To find out the name of the

class, single-click the class module file in the Project Explorer and

look at the Property Window below it. The field (Name) is the name

of the class; alter this to MyFirstPMP, and press enter.

Property Manager Pages

127

Now go back to our main module and after we acquired the active

document, place the following code:

VBA

Dim myPMP As MyFirstPMP

Set myPMP = New MyFirstPMP

myPMP.Show swApp

What this does is create a new variable of type MyFirstPMP, which is

the name of our PMP class we created previously. The instance of

this class (the variable) is called myPMP, call it whatever you want.

We then assign the variable as a new instance of our class. Finally we

call the instances function that we just declared in the class called

Show; this will run whatever code we place within the Show function

of our class.

We are now ready to run the project, however this will not do

anything yet as we have not created anything to display.

Property Manager Pages

128

Adding items to the Page
So what we have so far is a macro or program that will be run on start

or at the press of a button, that will create a new instance of our PMP

class, and call a function within it called Show. What we need to do is

focus our attention on the actual PMP class, in correctly initialising it,

adding items to the page, and making sure it all works as expected.

To start with, let me first explain something; although I have been

describing the class as deriving from a Property Manager Page base

class for ease of understanding, in truth it is actually a Property

Manager Page Handler class. The difference is that our PMP handler

class handles Property Manager Pages, it is not one itself. So our first

task is to create an actual instance of a PMP. The reason we have had

to create a handler class is to actually handle events that come back

from our pages, such as clicking a button, changing a dropdown box,

opening and closing etc... We could have just created a PMP directly

and shown it, but we would not have been able to handle anything it

does, so it would be as useful as a candle in a rainstorm.

By creating a new Page within our handler class, we are

automatically fed back all events from the page to our base class

functions we created earlier by passing the actual class we call the

creation function from into that function as a parameter. You will see

this later.

 An example of the event-driven feedback would be that when the

Page is first created we get informed of this through the

AfterActivation function, and when they close the PMP we are again

informed by the OnClose and AfterClose functions. You will see the

benefits of this event-driven class soon.

Property Manager Pages

129

Let’s start by creating the variables that we require such as the actual

Page, a single Group and a Label so that we can see something on

the page to begin with. Once we have done this and we know that

our page is working we will go on to create some more advanced and

useful pages.

Add the following variables to the MyFirstPMP class, at the top of

the class:

C#

PropertyManagerPage2 pmPage;

PropertyManagerPageGroup pmGroup;

PropertyManagerPageLabel pmLabel;

int idGroup = 0;

int idLabel = 1;

The pmPage is a variable for a Page. The pmGroup is a group box

object of a page, and the pmLabel is a simple text label on the form.

You will see these later. The idGroup and idLabel variables are

created and set to unique numbers, any you decide, as they are

simply used for the page to identify its controls as unique.

Now in the Show function we will create a few more variables ready

for use in a second:

C#

int pageoptions =

(int)(swPropertyManagerPageOptions_e.swPropertyManagerOptions_Ok

ayButton |

Property Manager Pages

130

swPropertyManagerPageOptions_e.swPropertyManagerOptions_Cancel

Button |

swPropertyManagerPageOptions_e.swPropertyManagerOptions_Locked

Page);

int groupoptions =

(int)(swAddGroupBoxOptions_e.swGroupBoxOptions_Expanded |

swAddGroupBoxOptions_e.swGroupBoxOptions_Visible);

int iErrors = 0;

int controloptions;

short controltype;

short controlalign;

The first variable pageoptions is the combination of enumerator

values we are going to use when creating our page. These

enumerators specify the options and type of page we create. The

complete list of page options is as follows:

swPropertyManagerOptions_OkayButton

This adds an OK button to the top of the page

swPropertyManagerOptions_CancelButton

This adds a cancel button to the top of the page

swPropertyManagerOptions_LockedPage
This prevents the page from automatically closing if the user tries to

edit the part, or select an object, or change to another document

etc...

swPropertyManagerOptions_CloseDialogButton

This has no use for us.

Property Manager Pages

131

swPropertyManagerOptions_MultiplePages

This property is set to show the previous/next page buttons if you

create multiple pages.

swPropertyManagerOptions_PushpinButton

This shows the pushpin button.

swPropertyManagerOptions_PreviewButton

This shows a default Preview button. The benefit of this is that a

LockedPage option will treat this button specially, and won't close

the page on click.

swPropertyManagerOptions_DisableSelection

This prevents the user from selecting any models in the document.

swPropertyManagerOptions_WhatsNew

This shows a “What's New” button.

swPropertyManagerOptions_AbortCommand

This forces any current command in progress such as mating to be

aborted when the page gets displayed.

swPropertyManagerOptions_UndoButton

This shows the user an undo button, and calls the OnUndo function

when clicked.

swPropertyManagerOptions_CanEscapeCancel

This allows the user to exit the Page by pressing escape. This is not

work if your page has a selection box.

Property Manager Pages

132

swPropertyManagerOptions_HandleKeystrokes

This sets the page up to handle all keystrokes, which get sent to the

OnKeystroke function for you to handle.

swPropertyManagerOptions_IsDragDropCmd

Allows drag-dropping on page.

For our purpose we just want to show the OK and Cancel Buttons,

and lock the page.

The groupoptions variable stores the options for our group box we

will create later. Again this is an enumerator like the page options,

but with far fewer options; whether the group is visible or not, if it is

expanded, and if it has a checkbox and whether that checkbox is

checked or not. For our example we simply show the group box and

make it expanded.

The other variables will come into play in a minute. Now it is time to

create the actual page:

C#

pmPage =

(PropertyManagerPage2)swApp.CreatePropertyManagerPage("My First

PMP", pageoptions, null, ref iErrors);

Property Manager Pages

133

CreatePropertyManagerPage
In order to create and setup a new PropertyManagerPage object we

must call the CreatePropertyManagerPage function of the

SolidWorks Application object, in our case the swApp object. You

can create PMP’s without any documents open, but you must have a

document open before you can display one.

The CreatePropertyManagerPage function looks like this:

retval = SldWorks.CreatePropertyManagerPage (title,

Options, handler, errors)

The title is a string value that is shown in the title of the page;

this is the white writing that appears on the blue-background for

windows such as the Mate window, or the Dimension Property

Window.

The Options are the options we have just been over regarding

what buttons and styles to apply.

The handler is a handle (think of it as a link) to the class that

should receive the feedback events, but in order to receive these

feedbacks our program has to be run in the same memory space

as SolidWorks, and for .Net that means we must create a add-in;

stand-alone applications cannot receive these feedbacks, so we

pass null instead.

What this means is that our .Net examples here will not actually

receive any feedback to any of the functions we have declared in

our class such as AfterActivation or OnClose etc... Advanced

add-ins is a dedicated topic that could take a whole book to

explain in itself.

Property Manager Pages

134

For now we will stick to creating the pages with .Net just to show

you how it is done, and then move onto VBA (which is run in the

same memory space as SolidWorks) to handle feedbacks.

The errors is the usual error variable we pass in as a reference

and read back after the check for errors:

C#

if (iErrors !=

(int)swPropertyManagerPageStatus_e.swPropertyManagerPage_Okay)

{

 MessageBox.Show("Failed to create page: " +

((swPropertyManagerPageStatus_e)iErrors).ToString());

 return;

}

You should recognise and understand this error checking routine by

now.

With the page successfully created, we will go ahead and set a

message to be displayed in yellow at the top of the page, and add a

group, and then finally add a label inside the group and show the

page.

C#

pmPage.SetMessage3("Welcome to my first PMP",

(int)swPropertyManagerPageMessageVisibility.swImportantMessageBox

,

(int)swPropertyManagerPageMessageExpanded.swMessageBoxMaintai

nExpandState, "My Caption");

Property Manager Pages

135

pmGroup =

(PropertyManagerPageGroup)pmPage.AddGroupBox(idGroup, "My

groupbox", groupoptions);

controloptions =

(int)(swAddControlOptions_e.swControlOptions_Enabled |

swAddControlOptions_e.swControlOptions_Visible);

controltype =

(int)swPropertyManagerPageControlType_e.swControlType_Label;

controlalign =

(int)swPropertyManagerPageControlLeftAlign_e.swControlAlign_Indent;

pmLabel = (PropertyManagerPageLabel)pmGroup.AddControl(idLabel,

controltype, "My label", controlalign, controloptions, "My tip");

pmPage.Show();

We start by setting the page message. This will appear at the top of

the page and is usually used for a brief description of what is going

on. The function to do this is called SetMessage3, of the

PropertyManagerPage object. You do not have to call this function

and if you chose not to then the PMP will simply not display this

standard message box.

In this example we are going to set it to show you what it looks like:

Property Manager Pages

136

SetMessage3
We use this function to set a top message of a page.

retval = PropertyManagerPage2.SetMessage3 (Message,

Visibility, Expanded, Caption)

The Message variable is literally the message to display.

The next two options, Visibility and Expanded are again

enumerators for the styling and visibility of the message box.

Play around with changing these values to see the results.

The Caption is the title of the message box.

AddGroupBox
Once we set this message, we then create a new group, adding it to

the pmPage page. The function is as follows:

retval = PropertyManagerPage2.AddGroupBox (Id,

Caption, Options)

The Id is a unique number to identify the control by.

The Caption is the title of the group box.

The Options is an enumerator specifying the style and visibility

of the control.

We pass in the id value we specified previously, which is simply a

unique number to identify the control by, this can be anything. The

ID will not denote the position on the page of the control; the order

in which you add the controls will be the order in which they are laid

out.

Property Manager Pages

137

We then pass in the groupoptions variable we specified earlier for

the group box so that it is visible and by default expanded not

collapsed.

With the group box create we then add a label inside the group box

be calling the general AddControl function. This function is available

from any PropertyManagerPage object and any

PropertyManagerPageGroup object.

In this example, we do not add the label to the pmPage object, but

instead we add it to the group we just created. Because every other

control other than a page or a group box is added using a unique

AddControl function.

AddControl
The AddControl function looks like this:

retval = PropertyManagerPage2.AddControl (Id,

ControlType, Caption, LeftAlign, Options, Tip)

The ID is the id we specified early.

The ControlType is the enumerator option for the type of control

we are adding.

The Caption is the text that will be displayed in the control.

The LeftAlign and Options are again enumerators for styling,

state and visibility.

And, the Tip is the text that will be displayed in a tooltip if the

user hovers over the control. This is usually a brief description or

help.

Property Manager Pages

138

We pass in our unique ID for the ID, and the enumerator for the

Label type. The other two enumerators we specify are for the

alignment of the control, and the visibility and state; these options

are self explanatory so just play around with them if you wish to see

the difference.

By calling the pmGroup’s AddControl function instead of the

pmPage’s AddControl function we add the label to the group not

the page.

Finally, we call the pages Show function to display the page to the

user. Compile your code and give it a go. You should see the

following results.

Property Manager Pages

139

You can continue to add other controls and play around with the

PMP’s in .Net, but unless you plan on creating an add-in then you

cannot really do much with them. Personally, I find very little use in

PMP’s when using .Net as you have the entire power of the .Net

framework and a programming language at your disposal to get user

information or display to them whatever you like. That’s not to say

PMP’s don’t have their place.

Let’s carry on exploring them but using VBA, as this will allow us to

quickly and easily handle the events back from the page. I will not

explain the coding that has already been explained in the .Net

version as the principles are all the same.

First, let’s add the items to the page in VBA just like we have done in

.Net.

In the MyFirstPMP class, before all of the functions but after the

Implements PropertyManagerPage2Handler5 line, place the

following variables:

VBA

Dim pmPage As PropertyManagerPage2

Dim pmGroup As PropertyManagerPageGroup

Dim pmLabel As PropertyManagerPageLabel

Dim idGroup As Integer

Dim idLabel As Integer

Dim lErrors As Long

Property Manager Pages

140

Dim pageoptions As Integer

Dim groupoptions As Integer

Dim controloptions As Integer

Dim controltype As Integer

Dim controlalign As Integer

Those are the only variables we need for now to get our example up

and running.

Go to the Show function we created and add the following code.

This code will create a new page and set it to the variable pmPage,

then give the page a message and add a group and label.

VBA

Sub Show()

lErrors = 0

idGroup = 0

idLabel = 1

pageoptions = swPropertyManager_CancelButton +

swPropertyManager_OkayButton +

swPropertyManagerOptions_LockedPage

groupoptions = swGroupBoxOptions_Expanded +

swGroupBoxOptions_Visible

Property Manager Pages

141

Set pmPage = swApp.CreatePropertyManagerPage("My First PMP",

pageoptions, Me, lErrors)

If lErrors = swPropertyManagerPage_Okay Then

 pmPage.SetMessage3 "Hello World! This is my first PMP",

swImportantMessageBox, swMessageBoxMaintainExpandState,

"Important Message"

 Set pmGroup = pmPage.AddGroupBox(idGroup, "My Group",

groupoptions)

 controltype = swControlType_Label

 controlalign = swControlAlign_Indent

 controloptions = swControlOptions_Enabled +

swControlOptions_Visible

 Set pmLabel = pmGroup.AddControl(idLabel, controltype, "My Label",

controlalign, controloptions, "My Tip")

 pmPage.Show

Else

 MsgBox "Error creating Property Manager Page"

End If

End Sub

As you can see this is identical to the .Net version, just with the

syntax of VBA. The advantage we have here however is that notice

the call we have made to CreatePropertyManagerPage:

Property Manager Pages

142

Set pmPage = swApp.CreatePropertyManagerPage("My

First PMP", pageoptions, Me, lErrors)

Now compare that with the .Net version, and see the difference:

pmPage =

(PropertyManagerPage2)swApp.CreatePropertyManagerPag

e("My First PMP", pageoptions, null, ref iErrors);

In .Net, remember I said we have to be running in-process of

SolidWorks to handle event feedbacks, and for that reason we

passed null as the handle to the class to handle these events?

Probably not, but anyway that is what I said.

Now if you look at the VBA function, we have passed a variable

called Me; this is a special variable that can be used to reference the

current object that the code resides in. Because we are calling this

CreatePropertyManagerPage function from within the MyFirstPMP

class, whatever instance of the class we are within, that is what the

Me variable refers to, so in this case we are actually passing a

reference to our myPMP instance of the class we created, and called

this Show function from:

Dim myPMP As MyFirstPMP

Set myPMP = New MyFirstPMP

myPMP.Show swApp

Because we have passed an instance of our class as the handle to this

page, it means that any events triggered by this page will be fed back

and handled by our myPMP class, which contains all of those

functions we created at the start, such as OnClose, AfterActivation

and OnKeystroke etc... So now, to test that we are handling these

Property Manager Pages

143

events, we will start by placing a simple message box in the OnClose,

AfterClose, and AfterActivation event functions:

VBA

Private Sub PropertyManagerPage2Handler5_AfterActivation()

MsgBox "Activated"

End Sub

Private Sub PropertyManagerPage2Handler5_AfterClose()

MsgBox "Closed"

End Sub

Private Sub PropertyManagerPage2Handler5_OnClose(ByVal Reason

As Long)

MsgBox "Closing"

End Sub

Run your macro and you will notice that the AfterActivation event

fires before the PMP is visible; this is because it receives activation

control as soon as the message process starts for that control, not

when it gets drawn (displayed).

Now close the PMP using the X button, and you will see that the

OnClose message box appears before the PMP is closed, and the

AfterClose event fires once it is destroyed.

Good, so let’s create something useful and start handling those

events!

Property Manager Pages

144

Responding to Events
In order to best demonstrate working with events and responding to

them we are going to create a new PMP that has a selection tool in it

that limits the user to selecting faces. From there we are then going

to change the colour of those selected faces to Red, Blue or Green

based on the button the user clicks.

We will begin by creating a new macro, connecting to SolidWorks,

getting the Active Document, and creating a new instance of a class

that implements PropertyManagerPage2Handler5; so basically we

are creating an identical copy of the macro we have just created.

The first modification to add a check in the main function that the

active document is not a drawing; after the check for an active

document place the following:

VBA

If swModel.GetType() = swDocDRAWING Then

MsgBox "Cannot set faces in a drawing"

Exit Sub

End If

Next we need to change the items that we create; instead of creating

a group and a label, we create a selection box and 3 buttons. We start

by specifying the usual variables and the new ones for our buttons

and selection control:

VBA

Dim pmPage As PropertyManagerPage2

Dim pmGroup As PropertyManagerPageGroup

Property Manager Pages

145

Dim pmSelection As PropertyManagerPageSelectionbox

Dim pmButtonRed As PropertyManagerPageButton

Dim pmButtonGreen As PropertyManagerPageButton

Dim pmButtonBlue As PropertyManagerPageButton

Dim idGroup As Integer

Dim idSel As Integer

Dim idButtonRed As Integer

Dim idButtonGreen As Integer

Dim idButtonBlue As Integer

Dim lErrors As Long

Dim pageoptions As Integer

Dim groupoptions As Integer

Dim controloptions As Integer

Dim controltype As Integer

Dim controlalign As Integer

Dim filters(0) As Long

You will recognise all of these variables, except two new types for

the Selectionbox and the Buttons. There is nothing really to explain,

there are no different options for the buttons than there was for the

label control, and for creating the selection box. You will see how to

set the Selectionbox options up in a minute.

The filters variable is used to store selection filter data, it will be

explained later.

Property Manager Pages

146

Now inside the Show function we want to create the usual page,

settings the initial variables, and checking for success before

attempting to add our controls. Here is the code we should have so

far:

VBA

lErrors = 0

idGroup = 1

idSel = 2

idButtonRed = 3

idButtonGreen = 4

idButtonBlue = 5

pageoptions = swPropertyManager_CancelButton +

swPropertyManager_OkayButton +

swPropertyManagerOptions_LockedPage

groupoptions = swGroupBoxOptions_Expanded +

swGroupBoxOptions_Visible

Set pmPage = swApp.CreatePropertyManagerPage("FunFaces",

pageoptions, Me, lErrors)

If lErrors = swPropertyManagerPage_Okay Then

 ‘ ADD OUR ITEMS TO THE PAGE HERE

Else

 MsgBox "Error creating Property Manager Page"

End If

Property Manager Pages

147

Where I have placed the comment we will add our new controls. We

start by setting the pages message up to tell the user what our macro

is going to do:

VBA

 pmPage.SetMessage3 "Select any faces you would like and then

click a color button to change the face colors!",

swImportantMessageBox, swMessageBoxMaintainExpandState,

"Important Message"

Adding a Selection Box & Buttons
Next we want to add our group and selection box:

VBA

 Set pmGroup = pmPage.AddGroupBox(idGroup, "Select faces",

swGroupBoxOptions_Expanded + swGroupBoxOptions_Visible)

 Set pmSelection = pmGroup.AddControl(idSel,

swControlType_Selectionbox, "Select faces", swControlAlign_Indent,

swControlOptions_Visible + swControlOptions_Enabled, "")

Simple enough wasn’t it? Finally we add 3 buttons with a name of

Red, Green and Blue respectively:

VBA

 controltype = swControlType_Button

 controlalign = swControlAlign_Indent

Property Manager Pages

148

 controloptions = swControlOptions_Enabled +

swControlOptions_Visible

 Set pmButtonRed = pmPage.AddControl(idButtonRed, controltype,

"Red", controlalign, controloptions, "")

 Set pmButtonGreen = pmPage.AddControl(idButtonGreen,

controltype, "Green", controlalign, controloptions, "")

 Set pmButtonBlue = pmPage.AddControl(idButtonBlue, controltype,

"Blue", controlalign, controloptions, "")

And as usual, once we have created our controls, we want to display

our PMP:

VBA

 pmPage.Show

Setting up Selection Filters
Before we try our macro, let’s first setup the selection filters;

anywhere after the pmSelection object has been created, place the

following code:

VBA

 filters(0) = swSelFACES

 pmSelection.SingleEntityOnly = True

 pmSelection.Height = 50

 pmSelection.SetSelectionFilters filters

Property Manager Pages

149

 pmSelection.SetStandardPictureLabel swBitmapLabel_SelectFace

The first line sets our Long array variable filters first and only item to

swSelFACES, which means we are only allowing faces to be

selected. This value is from the swSelType_e enumerator.

Next, we set up the selection mode to single-select, the height of the

selection box to 50 pixels, and the filter we just defines to the

selection box.

The last line sets the icon to use for this control. This function can be

called from any control you add such as a label, button, drop-down

list and all others. There are many icons:

swBitmapLabel_LinearDistance

swBitmapLabel_AngularDistance

swBitmapLabel_SelectEdgeFaceVertex

swBitmapLabel_SelectFaceSurface

swBitmapLabel_SelectVertex

swBitmapLabel_SelectFace

swBitmapLabel_SelectEdge

swBitmapLabel_SelectFaceEdge

swBitmapLabel_SelectComponent

swBitmapLabel_Diameter

swBitmapLabel_Radius

swBitmapLabel_LinearDistance1

swBitmapLabel_LinearDistance2

swBitmapLabel_Thickness1

swBitmapLabel_Thickness2

swBitmapLabel_LinearPattern

swBitmapLabel_CircularPattern

swBitmapLabel_Width

swBitmapLabel_Depth

swBitmapLabel_KFactor

Property Manager Pages

150

swBitmapLabel_BendAllowance

swBitmapLabel_BendDeduction

swBitmapLabel_RipGap

swBitmapLabel_SelectProfile

With using a selection box, we can place custom rules on whether to

allow certain selections, such as don’t allow fillets over 5mm or don’t

allow more than 5 items etc... This is pretty cool power to have, but

for our example we simply accept any selection that passes the

normal selection filter we set up of faces. So, in order to bypass the

custom rules we must pass True every time a selection is made in the

OnSubmitSelection function:

VBA

Private Function

PropertyManagerPage2Handler5_OnSubmitSelection(ByVal Id As Long,

ByVal Selection As Object, ByVal SelType As Long, ItemText As String)

As Boolean

PropertyManagerPage2Handler5_OnSubmitSelection = True

End Function

As you can see this function does one thing; return true all the time,

allowing any selection that passes our filter to be selected and added

to the selection box.

Now you are ready to run the macro, give it a go and select a face,

then close the page.

Property Manager Pages

151

You will notice that clicking the buttons

does nothing at the moment. That is

because we haven’t handled the event of

clicking the button. So let’s do that now!

Getting Selection & Settings

Face Colours
When the user clicks any of the 3 buttons

we want to get the current selection, and

then set the face colour to the respective

buttons colour, and finally clear the

selection so that they can carry on.

It all happens in the OnButtonPress event

as you can probably figure out. Within the OnButtonPress function

we firstly want to identify which button was pressed and create a

variable for the colour. Once we have the colour variable everything

else is the same regardless of what button was pressed:

VBA

Private Sub PropertyManagerPage2Handler5_OnButtonPress(ByVal Id

As Long)

Dim r As Integer, g As Integer, b As Integer

r = g = b = 0

If Id = idButtonRed Then r = 255

If Id = idButtonGreen Then g = 255

If Id = idButtonBlue Then b = 255

Property Manager Pages

152

Dim v As Variant

v = swModel.MaterialPropertyValues

swModel.SelectedFaceProperties RGB(r, g, b), v(3), v(4), v(5), v(6), v(7),

v(8), False, ""

swModel.ClearSelection2 (True)

End Sub

All we have done here is to create 3 variables for the red, green and

blue colours, set them all to 0, and then depending on which button

was pressed, set that specific colour value. With the RGB values set

we get the default part material properties then we set the selected

face properties to the colour we defined above, and finally clear the

selection so we can see the results.

153

Traversing

Traversing through an Assembly

Traversing through a Component

Displaying the results

Playing with Components and Features

Traversing

154

Traversing is the art of looping through every item in a list. By

traversing we are going to loop through every single component in

an assembly, later we will take it a step further and traverse though

all features of all of those components, and then after we are done

we will have some fun with .Net by creating a tree-view program and

adding some functionality to work with features and components.

Traversing through an Assembly
The basics of traversing an assembly are:-

- Get the root component of the assembly

- Get the children of that root component

- For each child, check if it has any children

- For each child of the child, repeat the loop

The way we create this loop so that the coding will traverse all

children of all children so we get every component in the assembly is

to create a function that accepts a Component2 object as a variable.

Within this function we check if the Component2 object passed in

has children, and if it has any, pass each child’s Component2 back

into the function, so that child gets checked for children also. This

loop will continue for every child so long as there are children. This

loop will effectively pass over every single component in an

assembly. For now we will just display a message box each time we

pass over a component.

Later on we will actually mimic the SolidWorks feature tree list that

is displayed on the left.

Traversing

155

Start by creating the usual template and getting the active

document. Now add the following variables next to the swApp and

swModel variables:

C#

Configuration swConf;

Component2 swRootComponent;

After the code where you get the active document, place the

following code to get the root component of the active document:

C#

swConf = (Configuration)swModel.GetActiveConfiguration();

swRootComponent = (Component2)swConf.GetRootComponent();

Before we can get components, we need to get a configuration, as

each configuration can have different components. We use the

ModelDoc2’s function GetActiveConfiguration function to get the

current configuration, casting it to Configuration. With the active

configuration we then call the Configuration function

GetRootComponent to get our root component. Job Done!

Now it is time to loop through this component looking for children,

and then to loop through those children. After we have acquired the

root component, pass this root component into a function that will

then check that component for children:

Traversing

156

C#

TraverseComponent(swRootComponent);

Now let us create the actual function to simply check if the

component has children, and if it does pass each child back into this

function:

C#

private void TraverseComponent(Component2 component)

{

 object[] children = (object[])component.GetChildren();

 if (children.Length > 0)

 {

 foreach (Component2 comp in children)

 {

 TraverseComponent(comp, tn);

 }

 }

}

This function is simple enough; we first attempt to get all, if any, of

the components children. Then we check if it does have any children,

and if it does we pass each child back into this loop and repeat. We

have to cast the array return from GetChildren as an Object array

not a Component2 array, and then cast each object to a

Component2 within the foreach loop. If you attempt to cast the

returned array straight to a Component2 array it will fail.

Traversing

157

To show that we have passed over each component we will add a

message box showing the component title before the call to

TraverseComponent:

C#

MessageBox.Show(((ModelDoc2)comp.GetModelDoc()).GetTitle());

All we have done here is got the ModelDoc2 document associated

with the component, and then got its title.

Now for the same code in VBA; start with the usual template, adding

the following additional variables;

VBA

Dim swConf As Configuration

Dim swRootComponent As Component2

Then after getting the active document place the following:

VBA

Set swConf = swModel.GetActiveConfiguration()

Set swRootComponent = swConf.GetRootComponent()

This will get the root component as explain in the .Net version. Now

we call the TraverseComponent function:

VBA

TraverseComponent swRootComponent

Traversing

158

And here is the TraverseComponent function to do just the same as

the .Net version:

VBA

Sub TraverseComponent(component As Component2)

Dim children As Variant

children = component.GetChildren()

If UBound(children) > 0 Then

 Dim i As Integer

 For i = 1 To UBound(children)

 MsgBox children(i).GetModelDoc().GetTitle()

 TraverseComponent children(i)

 Next

End If

End Sub

And that is all there is to it really. Using this form of loop we can get

access to all of the Component2 objects in an assembly and do what

we want with them. You will see some useful things to do later.

Traversing

159

Traversing through a Component
Now we have access to all of these components, the next thing that

would be handy is to then traverse these components for all of their

features.

The following code will show how to traverse a component. You can

place this code within the assembly traversal loop if you wish. I will

take you through creating a complete tree-view program next to see

this in use.

Within a component are features, and within those features can be

sub-features.

We will start by calling a function that accepts a Feature as a

parameter, a bit like the assembly component feature, that will loop

through all features:

C#

TraverseFeatures((Feature)comp.FirstFeature());

The comp object is a component we have acquired. If you place this

code within the assembly loop we made just we will loop every

component in an assembly. And here is the TraverseFeatures

function to loop all features:

C#

private void TraverseFeatures(Feature firstfeature, TreeNode tn)

{

 Feature feat = firstfeature;

Traversing

160

 while (feat != null)

 {

 MessageBox.Show(feat.Name);

 feat = (Feature)feat.GetNextFeature();

 }

}

As you can see this is much similar to the previous looping function,

however we only run through the top-level features. As I mentioned

earlier, features can have sub-features themselves, so before the

message box line, place the following line to call another function

that will loop all sub-features:

C#

TraverseSubFeatures(feat);

And the function to loop all sub-features will also loop itself for any

sub-features of sub-features, just like the assembly components

functions did, this way we get every single feature there is:

C#

private void TraverseSubFeatures(Feature feature, TreeNode node)

{

 Feature subfeat = (Feature)feature.GetFirstSubFeature();

 while (subfeat != null)

 {

 TraverseSubFeatures(subfeat, subtn);

 subfeat = (Feature)subfeat.GetNextSubFeature();

Traversing

161

 }

}

This looks identical to the previous function except instead of calling

GetNextFeature we call GetNextSubFeatue. Again within this

TraverseSubFeatures function you can place a message box call to

display the feature name.

Now for the VBA version; wherever you have a component object

you wish to traverse place the following function call:

VBA

TraverseFeatures (children(i).FirstFeature())

The children variable is an array of components from the previous

example, and we are calling the Component2 function FirstFeature

and passing it into the function TraverseFeatures. And here is the

TraverseFeatures function:

VBA

Sub TraverseFeatures(feature As feature)

Dim feat As feature

Set feat = feature

While Not feat Is Nothing

 MsgBox feat.Name

 TraverseSubFeatures feat

Traversing

162

 Set feat = feat.GetNextFeature()

Wend

End Sub

This function loops through all features, starting with the feature

passed in. It shows a message box to the user with the name of the

current feature within the loop. It then calls the

TraverseSubFeatures function to loop through all sub-features:

VBA

Sub TraverseSubFeatures(feature As feature)

Dim feat As feature

Set feat = feature.GetFirstSubFeature()

While Not feat Is Nothing

 MsgBox feat.Name

 TraverseSubFeatures feat

 Set feat = feat.GetNextSubFeature()

Wend

End Sub

This function is again identical to the .Net version so if you need an

explanation on what’s going on here read over the .Net section.

Traversing

163

And that covers that. We have now looped through every

component and every feature within an assembly. However, there is

a much better way to view all of these components and features

other than a message box to the user; through an actual tree-view

list just like in SolidWorks. That is what we are going to do next.

Traversing

164

Displaying the results
Taking what we have just learned and applying it to a new .Net

program, we are going to create a tree-view to display an

assembly/part tree-view list.

Begin by creating a new project from the normal template in your

desired .Net language. As well as the button in the form, we want to

add a new control; a tree-view.

Start by going into the Form Designer view by double-clicking the

Form1.cs file from the Solution Explorer, and then from the

Toolbox, drag a new TreeView control onto your form and size it

how you like.

Traversing

165

Into the coding view; add the following variables below the typical

swApp and swModel variables:

C#

Configuration swConf;

Component2 swRootComponent;

These will be used in a second. Now inside the button click event

function, after you have acquired the active document, you want to

do a check that we aren’t working with a drawing:

C#

if (swModel.GetType() == (int)swDocumentTypes_e.swDocDRAWING)

{

 MessageBox.Show("Active document cannot be a drawing");

 return;

}

Now we have an active document that is either a part or an assembly

we are ready to start traversing as usual, only this time instead of a

message box we want to add items to the TreeView control we just

created.

Before we do anything, we want to clear the current tree view list

before we start adding a new list:

C#

treeView1.Nodes.Clear();

Traversing

166

Next get the root component:

C#

swConf = (Configuration)swModel.GetActiveConfiguration();

swRootComponent = (Component2)swConf.GetRootComponent();

We will start our tree view with the top item being the actual active

model, like it is in SolidWorks:

C#

TreeNode tn = treeView1.Nodes.Add(swModel.GetTitle());

The Nodes Add function adds a node to the parent node or top-level

TreeView control, and it returns the actual node added. Because we

will be using this as a reference to add our child components and

features to we store it in a variable called tn.

Next we want to call the TraverseFeatures function we created in

the last section, and to call the TraverseComponent function too.

The addition in this instance is we are passing in a TreeNode variable

as the second parameter. We will use this TreeNode variable and

add nodes to it.

C#

TraverseFeatures((Feature)swModel.FirstFeature(), tn);

if (swRootComponent != null)

 TraverseComponent(swRootComponent, tn);

Traversing

167

We do a check that the root component was acquired before we

traverse it. If we are in a part, then there is no root component.

Let’s take a look at the modified TraverseComponent function

where we add each component to its parent tree node item:

C#

private void TraverseComponent(Component2 component, TreeNode

treeNode)

{

 object[] children = (object[])component.GetChildren();

 if (children.Length > 0)

 {

 foreach (Component2 comp in children)

 {

 TreeNode tn =

treeNode.Nodes.Add(((ModelDoc2)comp.GetModelDoc()).GetTitle());

 TraverseFeatures((Feature)comp.FirstFeature(), tn);

 TraverseComponent(comp, tn);

 }

 }

}

The only modification we have made here is removed the message

box code and instead add each child components title to the

TreeNode passed in. Then for each child, we loop its features and

child components, but instead passing it the components TreeNode

as the node to add any results too. This creates the list we are after.

Traversing

168

Next is to place this same modification into the TraverseFeatures

function too, and to add another small check to prevent adding the

assemblies components as features as well as components:

C#

private void TraverseFeatures(Feature firstfeature, TreeNode tn)

{

 Feature feat = firstfeature;

 while (feat != null)

 {

 if (string.Compare(feat.GetTypeName2(), "Reference", true) == 0)

 return;

 TreeNode subtn = tn.Nodes.Add(":: " + feat.Name);

 TraverseSubFeatures(feat, subtn);

 feat = (Feature)feat.GetNextFeature();

 }

}

The first thing we do is check that the features type is not a

reference. In assemblies the components within it report as features

as well as components; as a feature, components types return the

name “Reference”, so we check for this and ignore the features that

are references. If we removed this line of code we would get all of the

assemblies components added as single features, as well as

components.

If the feature is not a reference we then add it to the node passed in

to the function. For each feature we then loop through all sub-

Traversing

169

features, again passing in the features TreeNode object as the node

to add results too. Finally here is the modified TraverseSubFeatures

function:

C#

private void TraverseSubFeatures(Feature feature, TreeNode node)

{

 Feature subfeat = (Feature)feature.GetFirstSubFeature();

 while (subfeat != null)

 {

 TreeNode subtn = node.Nodes.Add("::" + subfeat.Name);

 TraverseSubFeatures(subfeat, subtn);

 subfeat = (Feature)subfeat.GetNextSubFeature();

 }

}

Nothing much to explain here really, other than we add a child

TreeNode to the TreeNode object passed into the function for each

sub-feature, and loop the function for all sub-features.

Try running your program. Click the button once you have an

assembly or part open and see as your results in the tree view. Once

you click the button it may take a few seconds to complete

depending on the size of your assembly.

Find the complete code listing below. The VB.Net example is also on

the accompanying CD as per-usual.

Traversing

170

Traversing

171

Playing with Components and Features
Now we have created a tree-view much like the SolidWorks one, it is

a brilliant time to have a play with these components and features.

We will start my making a small modification to the program we just

made so that we can reference any item in the tree view back to the

actual SolidWorks components and features. Add the following to

the using section:

C#

using System.Collections;

Add the following to the variables section:

C#

Hashtable hashStore;

We will use this variable to store one reference to the TreeNode

object, and one to the corresponding SolidWorks Component,

ModelDoc2 or Feature.

After the code line where we clear the tree view list we also want to

initialise a new hash table, effectively clearing it at the same time,

ready for a fresh start:

C#

hashStore = new Hashtable();

Traversing

172

A few more lines down after we add the first item to the tree view,

before traversing the root components, place the following code:

C#

hashStore.Add(tn, swModel);

What this does is add an item to our Hashtable; each item stores a

key, and a value. The key is used to lookup or find the value. Here

the tn variable is the TreeNode item we just added, and the value is

the actual swModel variable linked to our model. You will see how

we look the swModel back up later.

Inside the TraverseComponent function, right below the line where

we add the TreeNode again, add the same line as before, but this

time adding the component:

C#

hashStore.Add(tn, comp);

Inside the TraverseFeatures function, below the TreeNode code

line, just like before, add the following:

C#

hashStore.Add(subtn, feat);

And finally, in the TraverseSubFeatures function below the

TreeNode code add the following:

Traversing

173

C#

hashStore.Add(subtn, subfeat);

All we have done here is every time we add any TreeNode to the

TreeView control we add a reference in the Hashtable to the tree

node item and the associated model, component or feature.

 Linking the list with SolidWorks
The simplest task to perform on any component or feature is to

select it. What we will do is that every time the selection in our tree

view list is changed, we will select the corresponding object in

SolidWorks.

Start by going to the Form Designer, selecting the TreeView object

and going to its Events in the Property Window. Scroll down to the

AfterSelect entry and double-click it to add an event function for

every time the selection is changed.

This function will get called every

time the user selected an item

from our list. So we want to get

the currently selected item from

the tree view, and use that as the

key in our hash table to lookup

whatever component or feature

that item links back to. From

there we will have access to the

Component2 or Feature object

to do with as we please.

Traversing

174

Inside the AfterSelect function place the following code:

C#

if (treeView1.SelectedNode == null)

 return;

if (hashStore.Contains(treeView1.SelectedNode))

{

 object link = hashStore[treeView1.SelectedNode];

 if (treeView1.SelectedNode.Index != 0)

 {

 try

 {

 Component2 comp = (Component2)link;

 comp.Select3(false, null);

 }

 catch

 {

 Feature feat = (Feature)link;

 feat.Select2(false, -1);

 }

 }

}

We first check that we have an item in our list selected, and if so that

our hash table actually contains a link from the selected node

(although from our current code it always will). Then we acquire the

associated SolidWorks object be retrieving it from the hash table

passing in the selected node as the key. We then check if the

Traversing

175

selected node is the first item, in which case it is the model we add in

the beginning. Because we cannot select the model itself we skip the

code if it is.

If the selected node is not the first node, then it will be either a

Component2 object or a Feature object, but because the object is a

COM object, we cannot simply test what type it is, so we use a

Try/Catch block. If casting the object to a Component2 object fails,

we know it is a Feature.

Once we have the desired object, we call its respective Select

function to select it. Run our program and click the button to fill the

list, then select some items from the list and watch in SolidWorks as

the object gets selected.

Traversing

176

Pretty good hu? That’s not all. We are now going to add the ability to

toggle the suppression state of the components and features using a

right-click menu to our list. This can then be easily expanded to call

any function or do any task you would like on any component or

feature within an assembly or part.

Go back to the Form Designer and this time we are going to drag a

new ContextMenuStrip from the toolbar to the form.

You will then notice at the bottom of the Form Designer that you

have your newly created menu called ContextMenuStrip1. If you

single-click on this the menu designer will appear at the top of your

form. To add a new menu item you single-click the box where it

states “Type Here”, type the name of the menu, and press enter.

Traversing

177

Add a new menu item called “Toggle Suppression”, and in order to

add an event function for OnClick, just double-click the menu item.

Before we continue, go back

to the Form Designer and

select the TreeView control.

We must associate our newly

create menu with this control

so that when the user right-

clicks within it the menu

displays. In the Property

Window with the TreeView

control selected, for the

ContextMenuStrip property,

select your menu.

Traversing

178

Now it’s time to implement our suppression function. Within the

event function for the menu click that we created a minute ago place

the following code. This is mostly identical with the previous code

but where the Select coding is, we replace it with the suppression

toggle code:

C#

if (treeView1.SelectedNode == null)

 return;

if (hashStore.Contains(treeView1.SelectedNode))

{

 object link = hashStore[treeView1.SelectedNode];

 if (treeView1.SelectedNode.Index != 0)

 {

 try

 {

 Component2 comp = (Component2)link;

 int state = comp.GetSuppression();

 if (state ==

(int)swComponentSuppressionState_e.swComponentSuppressed)

 state =

(int)swComponentSuppressionState_e.swComponentFullyResolved;

 else

 state =

(int)swComponentSuppressionState_e.swComponentSuppressed;

 comp.SetSuppression2(state);

 }

Traversing

179

 catch

 {

 Feature feat = (Feature)link;

 Boolean[] suppression =

(Boolean[])feat.IsSuppressed2((int)swInConfigurationOpts_e.swThisConf

iguration, null);

 int state;

 if (suppression[0])

 state =

(int)swComponentSuppressionState_e.swComponentFullyResolved;

 else

 state =

(int)swComponentSuppressionState_e.swComponentSuppressed;

 feat.SetSuppression2(state,

(int)swInConfigurationOpts_e.swThisConfiguration, null);

 }

 }

}

If the associated object is a component we call the GetSuppression

function to retrieve the current state of the component. Next, we

check if it is already suppressed; if it is, we set the new state to

unsuppressed, if it isn’t we set it to suppressed.

With the state defined, we set it using the function SetSuppression2

function.

If the object is a feature, we call the Feature function IsSuppressed2,

which returns an array of suppression states for the feature in all

Traversing

180

configurations. Since we are only interested in the current

configuration, we just check the first item in the returns array. Again,

if it is already suppressed we unsuppress it, and if it is unsuppressed

we suppress it. With the state defined, we set it using the function

SetSuppression2 just like the component.

Test the program, and this time you can select an object first by left-

clicking, and then right-click to show the context menu, and click

Toggle Suppression to toggle the suppression state of the item.

Here endith the lesson. You should now have a good understanding

of the traversing process, as well as some of the functions and

methods you can use upon components and features. You should be

able to easily expand this program to do anything you please.

181

Custom Property Manager

Acquiring a Custom Property Manager

Adding Custom Properties

Deleting Custom Properties

Check Custom Property Existence

Updating Custom Properties

The ConfigSearcher program

Custom Property Manager

182

Using the Custom Property Manager is fairly simple; once you have

the CPM, you can either Add, Delete or Update a custom property in

either the Custom Property or the Configuration Specific Property.

Once you have these basics down, we will create a simple user

interface for letting the user modify properties in the active

document.

Acquiring a Custom Property Manager
By now you should be more than familiar with ways of getting a

handle to a ModelDoc2 object so I will not bore you with the finer

details.

In order to get a CustomPropertyManager object to allow us to

work with the custom properties of the associated model, we have to

get the Extension object of the ModelDoc2 object, and call its

function get_CustomPropertyManager in C#, and

CustomPropertyManager in VB.Net and VBA. This function accepts

one parameter:

Retval = ModelDocExtension.CustomPropertyManager (

ConfigName)

ConfigName is the name of the configuration to get the

manager for.If you pass an empty string in you will get the

custom property manager, not the configuration specific

manager.

So, firstly create a new variable for our manager:

C#

CustomPropertyManager cpm;

Custom Property Manager

183

VBA

Dim cpm As CustomPropertyManager

Then all that is left is to call the function to get the manager from

any ModelDoc2 object:

Custom Property Managers

C#

cpm = swModel.Extension.get_CustomPropertyManager("");

VBA

Set cpm = swModel.Extension. CustomPropertyManager("")

You now have a working CustomPropertyManager object to access

and modify the custom properties with.

But what if you want to get a manager to access the configuration

specific properties?

Configuration Specific Managers

C#

cpm = swModel.Extension.get_CustomPropertyManager("Default");

Custom Property Manager

184

VBA

Set cpm = swModel.Extension. CustomPropertyManager("Default")

This will get a manager for accessing the properties of the

configuration called “Default”. But what if you do not know the

names of the configurations? This is how you get get all

configuration names. You can then loop through them and use them

however you like:

C#

string[] modelconfigs = (string[])swModel.GetConfigurationNames();

VBA

Dim modelconfigs As Variant

modelconfigs = swModel.GetConfigurationNames

Custom Property Manager

185

Adding Custom Properties
With access to a working CustomPropertyManager you can now

start to use it how you wish. Let’s begin with showing you how to

add, delete and update properties, as well as check for success.

To add a custom property we call the following method from the

CPM:

Retval = CustomPropertyManager.Add2 (FieldName,

FieldType, FieldValue)

The FieldName parameter is the name of the custom property

field that you want to add. In the image above it is the

equivalent of the PropertyName field.

The FieldType is an enumerator of type swCustomInfoType_e,

with the following options:

o swCustomInfoUnknown

o swCustomInfoText

o swCustomInfoDate

o swCustomInfoNumber

o swCustomInfoYesOrNo

o swCustomInfoDouble

In the user interface for the custom properties the user can only

select 4 options (Text, Date, Number, Yes/No). The Double

Custom Property Manager

186

option is simple a non-whole number, and the Unknown option

is for errors.

The FieldValue is the Value / Text Expression field that the user

sees, not the Evaluated Value.

The return value is 0 if it fails and 1 if it succeeds.

So, to add a custom property called “Description” with a value of “My

Description”, of type Text we do this:

C#

int iRet = cpm.Add2("Description",

SwConst.swCustomInfoType_e.swCustomInfoText, "My Description");

VBA

Dim iRet As Long

iRet = cpm.Add2(“Description”, swCustomInfoText, “My Description”)

We then just check this iRet value for true (1) or false (0):

C#

if (iRet == 0)

 // Failed

else

 // Succeeded

Custom Property Manager

187

VBA

If iRet = 0 Then

‘ Failed

Else

‘ Succeeded

End If

Another quick note: the Add2 function will return a failure if the

property already exists in the first place.

Custom Property Manager

188

Deleting Custom Properties
The Delete function is much shorter to explain than the Add2

function as it only has 1 parameter.

retval = CustomPropertyManager.Delete (FieldName)

The FieldName is the name of the property you wish to delete.

This is the Property Name field in the image above.

The return value is 0 if it fails and 1 if it succeeds.

To delete the custom property field we theoretically just created,

called “Description”, we call the method Delete of the

CustomPropertyManager like so:

C#

int iRet = cpm.Delete("Description");

VBA

Dim iRet As Long

iRet = cpm.Delete(“Description”)

And once again we check for a success for failure:

C#

if (iRet == 0)

 // Failed

Custom Property Manager

189

else

 // Succeeded

VBA

If iRet = 0 Then

‘ Failed

Else

‘ Succeeded

End If

Note: This function will return a failure if the custom property did not

exist in the first place, so before we move on to updating custom

properties let’s take a look at how to check if one already exists.

Custom Property Manager

190

Check Custom Property Existence
The quick and simple way to get a custom property value is to use

the function Get2 of the CPM object:

C#

string theval, thevalres;

cpm.Get2(fieldName, out theval, out thevalres);

VBA

Dim theval As String

Dim thevalres As String

Cpm.Get2 fieldName, theval, thevalres

The fieldName is the name such as “Description” that we used

earlier, and the theval and thevalres variables are the Value and

Evaluated Value of the property. After the function call we can then

check if the theval variable is a blank string. This usually indicates

that the property does not exist because the user cannot set a

property value as nothing. The problem is macros and programs can

programmatically set a property value as a blank string, so this is not

always an accurate way to test if a property actually exists.

The better way

The longer-winded but fool-proof way to check whether a custom

property already exists is to get a list of all of the names of the

properties using GetNames function, and then checking every name

until you get a match.

Custom Property Manager

191

C#

string theval, theval2;

// Get all property names

List<string> propnames = new List<string>();

string[] getnames;

 getnames = (string[])cpm.GetNames();

 if (getnames != null)

 foreach (string prop in getnames)

 propnames.Add(prop.ToUpper());

// Check whether to overwrite if exists

if (propnames.Contains(fieldName.ToUpper()))

{

 // FOUND

}

else

 // NOT FOUND

We start by creating a new string List called propnames and a string

array called getnames. We fill getnames with all the property names

in our CPM, then we then loop through every name and add it to our

propnames List. The only reason we do this is so that after, we can

run a List function called Contains, which checks for us whether the

list contains a certain element.

We check whether it contains the field we are looking for, and go

from there.

Custom Property Manager

192

You may notice that I add and check the names with a function after

them called ToUpper. This function converts all letters to uppercase

because the Contains function is case sensitive, but the CPM is not,

so by them both uppercase it removes any case mismatch.

Now for the VBA version:

VBA

Dim theval As String

Dim thevalres As String

Dim bFound As Boolean

Dim getnames As Variant

getnames = cpm.getnames()

bFound = False

If UBound(getnames) > 0 Then

 Dim prop As Variant

 For Each prop In getnames

 If UCase(prop) = UCase(fieldName) Then

 bFound = True

 End If

 Next

End If

Custom Property Manager

193

Here we have done things slightly different; instead of using a list,

we have simply checked the results as we go, and the end result is in

the bFound variable.

You can bundle this code up into a nice function to return true or

false, you will do this later.

Then to properly check for a deleted property you can first check if it

exists or not first.

Custom Property Manager

194

Updating Custom Properties
The final step in this little journey is to see how to update an already

existing custom property.

Like the Delete function, updating a custom property will return a

failure if it does not already exist, so before you try to update a

property check that it exists first.

To update a custom property we use the following function:

retval = CustomPropertyManager.Set (FieldName,

FieldValue)

The FieldName is the Property Name in the image above like

other other functions, of the field you want to update the value

for.

The FieldValue is the new value you want to give the property.

This is the Value / Text Expression field in the image.

The return value is 1 if it fails and 0 if it succeeds.

We update our property like this:

C#

cpm.Set(fieldName, "My New Value");

Custom Property Manager

195

VBA

cpm.Set fieldName, “My New Value”

Where fieldName is the usual value for the field, such as

“Description” in this running example and we are setting its value to

“My New Value”.

If you want to get the original value before overwriting it use the

Get2 function we went over previously.

Custom Property Manager

196

The ConfigSearcher Program
We are going to create a program that will search custom properties

in all configurations of parts and assemblies, and display its results in

a TreeView control. This should help demonstrate using the Custom

Property Manager, and you should easily be able to expand this tool

to add, delete and update properties.

This tool will connect to the active SolidWorks running, get the

active document, and if it is an Assembly or Part, do the following:-

- Ask user for Property Name

- Ask user for Value to search for

Then, with that information, when the user clicks the button, the

tool will go through every configuration specific CPM object, check

all of the custom properties looking for the Property Name specified

for the user, and if its value contains the Value that the user entered,

add the results to the TreeView control.

Start with a new project in C# or VB.Net, using the usual template.

Go to the Form Designer. You should already have the default

button there; we are going to add a few more controls.

From the toolbar to the left drag in 2 Label controls, 2 TextBox

Controls, and 1 TreeView control.

Change the Text property of one Label control to:

“Configuration specific property to search:”

Custom Property Manager

197

Change the other to:

“Search for:”

Then position the items something like this:

Set the (Name) property of the left-hand TextBox control to:

tbConfigProperty

Set the (Name) property of the right-hand TextBox control to:

tbFind

And finally we want to change the name of the TreeView control

(the big control at the bottom):

Custom Property Manager

198

Set the (Name) property of the TreeView control to:

tvList

Searching the properties
If you haven’t already, add a Click event handle to the button like

usual. Within this buttons event function place the code for

connecting to SolidWorks, getting the active documents, and

checking that the document is not a drawing (as drawings cannot

have configuration specific properties):

C#

try

{

 swApp =

(SldWorks.SldWorks)Marshal.GetActiveObject("SldWorks.Application");

}

catch

{

 MessageBox.Show("Error getting SolidWorks Handle");

 return;

}

swModel = (ModelDoc2)swApp.ActiveDoc;

if (swModel == null)

{

 MessageBox.Show("Failed to get active document");

 return;

Custom Property Manager

199

}

if (swModel.GetType() == (int)swDocumentTypes_e.swDocDRAWING)

{

 MessageBox.Show("Active document cannot be a drawing");

 return;

}

Now we are ready to start our search. We begin by clearing the

TreeView control of any items from previous searches, and getting

the variables entered by the user ready for use:

C#

tvList.Nodes.Clear();

string configProp = tbConfigProperty.Text;

string searchFor = tbFind.Text;

string value;

As you can see the first line is a call to our TreeView control that we

called tvList. By accessing the Nodes object we can call the function

Clear, to remove any nodes in the list.

We then gather the information from the TextBox controls using the

Text property of them which returns the text that the user has typed

in.

The third variable value will be used to store the original value of the

custom property we retrieve later, before comparing it the what the

user wants to find.

Custom Property Manager

200

We continue with a few more variables and retrieving all of the

configuration names for this document, so that we can check each

one later:

C#

Configuration config;

CustomPropertyManager cpm;

string[] modelconfigs = (string[])swModel.GetConfigurationNames();

No explanation needed here. Now for the main loop; don’t try to

understand it all straight away I will take you through it:

C#

if (modelconfigs != null)

 foreach (string s in modelconfigs)

 {

 config = (Configuration)swModel.GetConfigurationByName(s);

 cpm = config.CustomPropertyManager;

 value = GetCustomProperty(cpm, configProp);

 if (value.ToUpper().Contains(searchFor.ToUpper()))

 AddConfig(cpm, s);

 }

Firstly, we check that we managed to actually get the configuration

names; normally this wouldn’t fail but just in case.

Custom Property Manager

201

Then we loop through every name in the list, and for each name we

acquire its Configuration using the ModelDoc2 function

GetConfigurationByName. This takes the name of the

configuration as a parameter:

retval = ModelDoc2.GetConfigurationByName (name)

The function returns Nothing in VBA and VB.Net, and null in C# so

we could check if we managed to get it. The reason we don’t is

because the only time this returns failure is when you pass an invalid

name in, and since we used the GetConfigurationNames function

this will never fail.

With the Configuration object we can then acquire the CPM we have

been long waiting for by accessing it through the Configuration

object.

The only thing left to do is get the current custom property value for

the field we are after, and to check whether the value we are

searching for is contained within it. As you can see we get the value

using a function called GetCustomProperty which accepts a

CustomPropertyManager object and a string. This is not a built-in

function it’s one you will create in a moment.

With the value of the field the user was after, we check whether it

contains the string the user is searching for. To do this we must cast

both the original string and the one we are looking for to uppercase

to remove any case-sensitivity (such as ‘A’ = ‘a’ being false), unless

you want case-sensitivity. With uppercase values we then call the

string function Contains, which returns true or false if a match is

found.

Custom Property Manager

202

Finally, if the property value the user specified does contain the value

they were searching for, we want to add this configuration to our list

to show that it was found. Again we do this with a function called

AddConfig that takes a CustomPropertyManager object, and a

string. You will create this function as well as the

GetCustomProperty function now.

GetCustomProperty function
You have actually written this function before! If you go back several

pages to near the beginning of this chapter to the section Check

Custom Property Existence, you will find the following:

C#

string theval, theval2;

// Get all property names

List<string> propnames = new List<string>();

string[] getnames;

 getnames = (string[])cpm.GetNames();

 if (getnames != null)

 foreach (string prop in getnames)

 propnames.Add(prop.ToUpper());

// Check whether to overwrite if exists

if (propnames.Contains(fieldName.ToUpper()))

{

 // FOUND

Custom Property Manager

203

}

else

 // NOT FOUND

This searched for the existence of a property. All we do now is add 2

lines of code replacing the 2 comments, and add a return value to get

the function we need, which retrieves the value of the property that

is passed in as a string, using the CustomPropertyManager object

given:

C#

private string GetCustomProperty(CustomPropertyManager cpm, string

fieldName)

{

 string theval, thevalres;

 // Get all property names

 List<string> propnames = new List<string>();

 string[] getnames;

 if (cpm != null)

 {

 getnames = (string[])cpm.GetNames();

 if (getnames != null)

 foreach (string prop in getnames)

 propnames.Add(prop.ToUpper());

 }

 // Check whether to overwrite if exists

Custom Property Manager

204

 if (propnames.Contains(fieldName.ToUpper()))

 {

 cpm.Get2(fieldName, out theval, out thevalres);

 }

 else

 theval = "";

 return theval;

}

If the property we are looking for doesn’t exist, we just return a blank

string; else it calls the Get2 function I described in the previous

section to get the value of the property. The function returns the

theval variable to the caller.

AddConfig function
The last step is to actually display the results once they have been

found. For this we want to show each configuration that matches the

search criteria, and as a bonus we will then add every configuration

specific property to the tree view node of that configuration:

C#

private void AddConfig(CustomPropertyManager cpm, string name)

{

 TreeNode tn = tvList.Nodes.Add(name);

 string[] getnames;

 if (cpm != null)

 {

Custom Property Manager

205

 getnames = (string[])cpm.GetNames();

 if (getnames != null)

 foreach (string prop in getnames)

 tn.Nodes.Add(prop + ": " + GetCustomProperty(cpm, prop));

 }

}

We start by adding a new node to

our TreeView control using the Add

function. This function returns a

handle to the TreeNode object it

just created, and adds the node to

the tree. A node is an entry like in a

ListBox control, but it can have child

nodes within it, which display under

it with the +/- symbols, like the

Windows Explorer.

We store this in a new TreeNode variable for use later. Passing a

string into the Add function sets the text of the node to that string,

so it makes sense that we want our item to appear with the name of

the configuration, so we passed that into this function in our code

above.

With the TreeNode added, we then check whether the CPM object is

valid or not, and if it is we get all of the property names from the

CPM (all of the configuration specific properties), and then add a

child node for each property showing its name and value.

Custom Property Manager

206

And that is pretty much it in a nutshell! Compile and run your

program and with SolidWorks open and an assembly or part open

test it out.

Make sure the model has some configuration specific properties so

that you can test the searching function and then run it to see the

results.

As usual find the complete source code on the CD. This tool is only

made it the .Net languages.

207

Working with Drawings

Automatically create Drawing Sheet

Counting Views

Printing Drawing Sheets

Working with Drawings

208

We have focused mostly on parts and assemblies so far, so let’s take

a look at some things to do with drawings. We will start by creating a

macro/program that automatically creates drawing sheets from

parts and assemblies, and move on to analysing features of the

drawing and more.

Automatically create Drawing Sheet
This is simple enough to do; you know the routine by name, usual

template with button or macro with it connecting to SolidWorks, but

this time do not bother checking for an active document as we do

not need one in this example.

The first thing we want to do when the user clicks the button or runs

the macro is to ask the user for the part or assembly to create a new

drawing from. In .Net we can do this using an OpenFileDialog, but in

VBA we must use a much more basic technique of having the user

type in. We could import Windows API calls from the comdlg32.dll,

but that’s too much to explain and would veer off the SolidWorks

programming topics.

C#

OpenFileDialog ofd = new OpenFileDialog();

ofd.CheckFileExists = true;

ofd.Filter = "SolidWorks models (*.sldprt, *.sldasm)|*.sldprt;*.sldasm";

ofd.ShowDialog();

We create a new instance of the OpenFileDialog object and then

show it to the user by calling the ShowDialog function.

Working with Drawings

209

Before that we set the Filter property, which will limit the user to

selecting only the file formats we want them too. This filter follows

the format of starting with the name which will be displayed to the

user, separated by a pipe (|) then the actual regex string to match file

types, separated by semicolons (;).

Notice the filter list that we typed in and how it has limited the files

we can see to assemblies and parts.

Once the ShowDialog function has returned, the property FileName

of the OpenFileDialog will either be empty if the user clicked cancel,

or the full location of the file they selected, so we check this out.

Working with Drawings

210

If the user clicked cancel we will just ignore this and end our function,

but if they selected a file we will create a new variable to store this

value:

C#

string filename = ofd.FileName;

if (filename == "")

 return;

And here is the VBA coding so far:

VBA

Dim filename As String

filename = InputBox(Prompt:="Enter full location of file",

Title:="Assembly or Part")

If filename = "" Then

Exit Sub

End If

Working with Drawings

211

The InputBox function of VBA creates this little input box for us, so it

will do for now.

Unlike .Net, VBA has not prevented the user from selecting specific

files, nor whether the file even exists, so we must do this now:

VBA

Private Function FileExists(ByVal sPathName As String, Optional

Directory As Boolean) As Boolean

On Error Resume Next

If sPathName <> "" Then

If IsMissing(Directory) Or Directory = False Then

FileExists = (Len(Dir(sPathName)) <> 0)

Else

FileExists = (Len(Dir(sPathName, vbDirectory)) <> 0)

End If

End If

Working with Drawings

212

End Function

This function will return True if a file or directory exists, and False if

not, so now we do this:

VBA

If Len(filename) < 8 Then

MsgBox "Invalid filename"

Exit Sub

End If

Dim ext As String

ext = UCase(Right(filename, 7))

If Not FileExists(filename) Or (ext <> ".SLDASM" And ext <> ".SLDPRT")

Then

MsgBox "Invalid filename"

Exit Sub

End If

Here we check the filename is long enough to be valid, and if so get

the last 7 characters of the name, and check whether the case-

insensitive version matches that of a part or assembly, and that the

file exists, else it exits.

You can see the clear advantages .Net has here.

Working with Drawings

213

Creating the Drawing Sheet
With the user input gathered for the file location all that is now left is

to create a drawing from this file. We are going to add the 3 common

views to the sheet for this example.

When creating a drawing we must firstly select a drawing template

to use, so let’s start by getting that using from the SolidWorks

System Settings for this user.

C#

string drwTemplate =

swApp.GetUserPreferenceStringValue((int)swUserPreferenceStringValu

e_e.swDefaultTemplateDrawing);

VBA

Dim drwTemplate As String

drwTemplate =

swApp.GetUserPreferenceStringValue(swDefaultTemplateDrawing)

The SldWorks functions GetUserPreference* and

SetUserPreference* are used to get and set most of the options you

see in the System and Document options of SolidWorks. In this case

we are pulling in the default drawing template location:

Working with Drawings

214

With the template name acquired we can now create a new drawing

using the following function of the SldWorks object. We actually

used this function back at the very beginning:

SldWorks.NewDocument (templateName, paperSize,

width, height)

Only this time we will be using the paperSize, width and height

parameters. We will acquire all of these from the template name we

just got using another function:

retval = SldWorks.GetTemplateSizes (filename)

The filename is the name of the template to retrieve the values

from.

The return value is an array of Double numbers, or in VBA a

Variant object, containing, in order, the paper size, width and

height.

The papersize value can be cast to an enumerator of type

swDwgPaperSizes_e if necessary.

Working with Drawings

215

Let’s get the sizes to complete the equation:

C#

double[] sizes = swApp.GetTemplateSizes(drwTemplate);

if (sizes == null)

{

 MessageBox.Show("Failed to get valid template sizes.");

 return;

}

VBA

Dim sizes As Variant

sizes = swApp.GetTemplateSizes(drwTemplate)

If IsEmpty(sizes) Then

MsgBox "Failed to get valid template sizes."

Exit Sub

End If

We also check that we managed to get the sizes before the next

step, as this will fail if the template is corrupt or has invalid data, or

does not exist.

With the template name, paper size, width and height, we call the

function NewDocument to create the new drawing sheet we are

after, and store the returned handle to a new variable to access later

for adding views to.

Working with Drawings

216

C#

DrawingDoc swDrawing =

(DrawingDoc)swApp.NewDocument(drwTemplate, (int)sizes[0], sizes[1],

sizes[2]);

VBA

Dim swDrawing As DrawingDoc

Set swDrawing = swApp.NewDocument(drwTemplate, sizes(0), sizes(1),

sizes(2))

In C# we have to cast the first size entry to an int as the function

requires an integer. We also cast the returned Object to a

DrawingDoc, usual procedure. VBA does the casting for us so it

looks a bit simpler.

At this stage SolidWorks should now have a new drawing document

in its active window, and our handle should point to it. Do the usual

check just in case however:

C#

if (swDrawing == null)

{

 MessageBox.Show("Failed to create new drawing document.");

 return;

}

Working with Drawings

217

VBA

If swDrawing Is Nothing Then

MsgBox "Failed to create new drawing sheet."

Exit Sub

End If

Adding the drawing views
With our drawing sheet successfully create the next step is to add the

standard 3-views of our selected model to our new drawing

document using this function:

retval = DrawingDoc.Create3rdAngleViews2 (

modelName)

The modelName is the name of the assembly or part that you

want to create the views from.

The return value is true if success, and false if failure.

There is also a Create1stAngleViews2 function if you would like to

create 1st angle views instead, its left up to you. You could even have

a checkbox or ask the user which they would like to create very

simply.

Here is our call:

C#

bool bRet = swDrawing.Create3rdAngleViews2(filename);

if (!bRet)

Working with Drawings

218

{

 MessageBox.Show("Failed to add 3 common views.");

 return;

}

VBA

Dim bRet As Boolean

bRet = swDrawing.Create3rdAngleViews2(filename)

If bRet = False Then

MsgBox "Failed to add 3 common views."

Exit Sub

End If

Notice the variable we pass in (filename) is the name of the model

we asked the user to select earlier. If all has gone well we have now

created the 3-views in the drawing document of the user selected

model.

Working with Drawings

219

Counting Views
Another off the shelf random exercise for you now; this time we are

going to find out how many drawing views a drawing has in each

sheet. This may not seem of much use, but this demonstrates how to

access handles to drawing views to do what you please with. We will

be displaying the drawing view types and names in this example.

Start with the usual template, and get the active document, check

that it is a drawing and proceed.

Starting with .Net as usual, in the Form Designer drag a new

TextBox control to your form; we are going to use this to display the

information. Set its Multiline property to True and its ScrollBars

property to Both.

Working with Drawings

220

If you remember some chapters back where we created the

program/macro to loop all drawing sheets and save them as DXF, we

will be using the same coding here to loop through each sheet, and

then within that loop get our information:

C#

DrawingDoc swDrwDoc = (DrawingDoc)swModel;

string[] sheetNames = (string[])swDrwDoc.GetSheetNames();

Sheet swDrwSheet;

textBox1.Text = “”;

foreach (string sheetname in sheetNames)

{

 swDrwDoc.ActivateSheet(sheetname);

 swDrwSheet = (Sheet)swDrwDoc.GetCurrentSheet();

 GetSheetInformation(swDrwSheet);

}

The only difference here is that we clear our TextBox control of any

text before we begin so that any text already in is removed, and we

have added an extra variable called swDrwSheet, which is a Sheet

object. Once each sheet is activated, we get a handle to it using the

function GetCurrentSheet. With this variable we can then do what

we please with the sheet, so to keep things clean and tidy we pass

this Sheet object to a new function that will do our dirty work, called

GetSheetInformation. Place your function below the button event

function:

Working with Drawings

221

C#

private void button1_Click(object sender, EventArgs e)

{

 ...

 ...

 DrawingDoc swDrwDoc = (DrawingDoc)swModel;

 string[] sheetNames = (string[])swDrwDoc.GetSheetNames();

 Sheet swDrwSheet;

 foreach (string sheetname in sheetNames)

 {

 swDrwDoc.ActivateSheet(sheetname);

 swDrwSheet = (Sheet)swDrwDoc.GetCurrentSheet();

 GetSheetInformation(swDrwSheet,

(SldWorks.View)swDrwDoc.GetFirstView());

 }

}

private void GetSheetInformation(Sheet sheet, SldWorks.View firstView)

{

}

I have omitted some code; this is just to show you where to place

your function.

The function takes the Sheet object for obvious reasons, and a View

object that will be the first view of the sheet so that we can loop

Working with Drawings

222

through them all within the function, gather the information, and

add that info to our TextBox control.

C#

int iCount = 0;

string nl = System.Environment.NewLine;

string tab = " - ";

textBox1.Text += "Sheet Name: " + sheet.GetName() + nl;

while (firstView != null)

{

 string viewType =

((swDrawingViewTypes_e)firstView.Type).ToString();

 textBox1.Text += tab + firstView.GetName2() + " (" + viewType + ")" +

nl;

 iCount++;

 firstView = (SldWorks.View)firstView.GetNextView();

}

textBox1.Text += tab + "Total views: " + iCount.ToString() + nl + nl;

The first thing we do is to create a new variable to store the number

of views we encounter called iCount. Then we create a few string

variables for a new line (like pressing Enter on the keyboard), and for

a tab to show that an item is indented. Then we add the sheet name

to our TextBox text as well as a new line.

Working with Drawings

223

Next we loop every view within this sheet by checking if the current

view is null or not, and if it isn’t process it and then call the View

function GetNextView; this will return the next view of its parent

Sheet object, or null if it has reached the end.

For each view we then get the type of view we are dealing with by

converting the integer returned from the Type property of the View

object back to an enumerator variable of type

swDrawingViewTypes_e, and then back into a readable string like

we have done in previous examples.

With a readable type value, we then add the views’ name and type to

the text. Notice we have added the tab variable to the start; this

creates the effect of indenting our entries to show it is part of the

sheet.

Once the details have been added we increment the view count and

loop.

Finally when all views have been processed we want to tell the user

how many views there were on this particular sheet. All we need to

do for this is to show the user the iCount value:

textBox1.Text += tab + "Total views: " + iCount.ToString() + nl + nl;

 With this being the final line of this sheet that we are adding to the

TextBox, we add two new lines instead of one to give it a clean

break from the next sheet.

Compile and test your program and take a look at the results:

Working with Drawings

224

You will notice here that the first view of all sheets is actually the

sheet itself; this is because the structure of the SolidWorks sheet is

basically just a bunch of View objects embedded inside other View

objects. If you want to exclude this item from the list just check the

Type value, and if it is the type swDrawingSheet, skip it.

Now onto the VBA version of this little tool; start with the usual

template. Insert a new User Form from the Insert menu and add a

CommandButton and a TextBox to the form.

Set the MultiLine property of the TextBox to True, and the

ScrollBars property to Both.

Working with Drawings

225

Position them so they look something like this:

Double-click the button to add the button Click event function. Move

the usual code (for connecting to SolidWorks, getting the active

document and checking if it is a drawing) from the main function to

this Click event function, and within the main function place this

code to show the form:

VBA

Sub main()

UserForm1.Show

End Sub

Back to the event function below the code we just pasted in, we add

the same code I described above in the .Net version.

Working with Drawings

226

VBA

Dim swDrwDoc As DrawingDoc

Set swDrwDoc = swModel

Dim sheetNames As Variant

sheetNames = swModel.GetSheetNames()

Dim swDrwSheet As sheet

TextBox1.Text = ""

Dim sheetname As Variant

For Each sheetname In sheetNames

 swDrwDoc.ActivateSheet sheetname

 Set swDrwSheet = swDrwDoc.GetCurrentSheet()

 GetSheetInformation swDrwSheet, swDrwDoc.GetFirstView()

Next sheetname

If you need an explanation of this code just take a look at the C#

version above as all of the theory is explained there.

All that is left now is to create the GetSheetInformation function.

This function is slightly different than the other version as explained

many times now VBA lacks the ability to convert and enumerator to

a string directly.

I will leave out the code line of acquiring the type value and show

that separately.

Working with Drawings

227

VBA

Private Sub GetSheetInformation(ByVal sheet As sheet, firstView As

View)

Dim iCount As Integer

iCount = 0

Dim sTab As String

sTab = " - "

TextBox1.Text = TextBox1.Text & "Sheet Name: " & sheet.GetName() &

vbCr

While Not firstView Is Nothing

 Dim iType As Integer

 iType = firstView.Type

 Dim viewType As String

 viewType = TODO

 TextBox1.Text = TextBox1.Text & sTab & firstView.GetName2() & " ("

& viewType & ")" & vbCr

 iCount = iCount + 1

 Set firstView = firstView.GetNextView()

Wend

TextBox1.Text = TextBox1.Text & "Total views: " & iCount & vbCr & vbCr

End Sub

Working with Drawings

228

Notice the TODO note within the code. This is the like where we

statically convert the integer value of the Type property of the View

object to a user-friendly readable string variable.

VBA

viewType = Switch(

iType = swDrawingViewTypes_e.swDrawingAlternatePositionView,

"Alternate Position View",

iType = swDrawingViewTypes_e.swDrawingAuxiliaryView, "Auxiliary

View",

iType = swDrawingViewTypes_e.swDrawingDetachedView, "Detached

View",

iType = swDrawingViewTypes_e.swDrawingDetailView, "Detail View",

iType = swDrawingViewTypes_e.swDrawingNamedView, "Named View",

iType = swDrawingViewTypes_e.swDrawingProjectedView, "Projected

View",

iType = swDrawingViewTypes_e.swDrawingRelativeView, "Relative

View",

iType = swDrawingViewTypes_e.swDrawingSectionView, "Section

View",

iType = swDrawingViewTypes_e.swDrawingSheet, "Sheet",

iType = swDrawingViewTypes_e.swDrawingStandardView, "Standard

View")

All we have done here is done a Switch function to select the correct

value from the list. This function was explained in a previous chapter,

but basically it works by returning the variable after the first value

that returns True; so in this case, we check if “iType =

swDrawingDetailView”, if it does it returns the variable after that,

which is “Detail View”, if it is false, it carries on until it finds one.

Working with Drawings

229

You may notice

that the TextBox

object can

actually be

edited by the

user simply by

typing into it.

This is not really

a problem but

technically it is

not good practise

for a program to

allow the user to do anything they are not meant to be doing. If you

want to fix this all you need to do is go back to the Form Designer

and alter the Locked property to True. In .Net the property is called

Readonly.

Working with Drawings

230

Printing Drawing Sheets
Another popular function commonly asked for by SolidWorks

programmers is the ability to print a document. This section will

show you how to print any document, by it a drawing, part or

assembly, using the 2 possibly functions (one of which includes the

ability to specify your printer name and options), and then give an

example of printing each drawing sheet.

I will start by describing the functions we are going to use, and then

we will go ahead and implement them into a nice little package.

The two options we have here are to print the document with one

line of code, that prints the document to the last printer it was

printed to, or the option to specify all details such as printer name.

Starting with the simplest method:

PrintDirect function
This function of the ModelDoc2 object takes no parameters and

returns no value, so it couldn’t be simpler. Once you have a

ModelDoc2 handle (or an AssemblyDoc, PartDoc or DrawingDoc to

cast back to), you can call this function:

void ModelDoc2.PrintDirect ()

Although this is nice and simple, that is pretty much the last thing

you want when you are printing something; it provides no options for

printing multiple copies, printing sheet ranges or printing to a

specific printer.

Working with Drawings

231

PrintOut2 function
If you require more control over your printing then this is the

function for you.

void = ModelDocExtension.PrintOut2 (PageArray,

Copies, Collate, Printer, PrintFileName)

The PageArray parameter is an array of integer values grouped

in pairs. Each pair is a range from the first value to the last such

as 1 and 5, which would print pages 1, 2, 3, 4 and 5. If you had an

array containing 1, 5, 7 and 8 then pages 1, 2, 3, 4, 5, 7 and 8

would be printed.

The Copies parameter is the number of copies to send to the

printer, ranging from 1 onwards.

The Collate parameter is a Boolean variable for whether to

collate the pages or not. If you have selected to print more than

one copy then collating will print pages in complete groups

instead of single page groups. For example with collating on and

2 copies selected, the output with collation would be 1, 2, 3, 4, 1,

2, 3, 4. Without collating the same output would be 1, 1, 2, 2, 3,

3, 4, 4, in order of the pages coming out of the printer.

The Printer parameter is the exact matching name of the Printer

of the printer to print to, from the Printers list in the Control

Panel. Set to null or Nothing causes this function to print to the

default printer.

The PrintFileName parameter is the name of the file to save the

print output to. This is not like printing to PDF, this is actually

sending the print data to a file, not the actual rendered output.

Working with Drawings

232

This function is part of the ModelDocExtension object, not the

ModelDoc2 object like the PrintDirect function, so in order to call it

just do the following (presuming swModel is a ModelDoc2 variable):

swModel.Extension.PrintOut2(...)

Although you can use this function to print any type of document,

the following example will be to print drawing sheets only.

The Printing program
Starting the usual fashion with the .Net example first; create a new

project with the usual template. Add 2 Buttons, a ListBox, and a

ComboBox and place/name them like so:

Make a few changes to the properties of these controls; change the

SelectionMode of the ListBox control:

This will allow the user to select multiple items from the list.

Working with Drawings

233

Next, change the DropDownStyle of the ComboBox control:

This will prevent the user from editing the list as we want them to be

fixed to the list here. Name the buttons so there Text value is as

shown, and add a Click event handle to each.

Getting a list of installed printers
In the Coding View we are going to get a list of all installed printers

on the computer as soon as the form is opened; first, add the

following to the using section so that we can access the list of

printers using a System call:

C#

using System.Drawing.Printing;

Declare a new variable next to the usual ones:

C#

SldWorks.SldWorks swApp;

ModelDoc2 swModel;

string[] printers;

This will store our printer list. Within the constructor function add

the following:

Working with Drawings

234

C#

public Form1()

{

 InitializeComponent();

 printers = new string[PrinterSettings.InstalledPrinters.Count];

 PrinterSettings.InstalledPrinters.CopyTo(printers, 0);

 comboBox1.Items.AddRange(printers);

 comboBox1.SelectedIndex = 0;

}

We initialise the printers variable to the size of the number of

printers that are installed on the computer, and then we copy the list

of printers to that variable by accessing the array of printers from the

PrinterSettings object. The CopyTo function copies the content of

the calling array (InstalledPrinters) to the destination array

(printers), starting at the position in the array specified (0).

Simplistically this just copies the InstalledPrinters array to the

printers array.

With the array gathered, we load the list into our ComboBox control

and select the first item in the list by default.

A quick note here; I have not added error checking for if there are no

printers at all installed on the computer; if there are not this program

will just crash. I will leave the error-checking task up to you as a

simple test of what you have learned so far, so if you can manage it.

Working with Drawings

235

Getting sheet names
Within the Click function of the “Get Sheets” button we are going to

place our usual code for connecting to SolidWorks and the rest, and

get all drawing sheet names like we have done in previous examples.

We then add the sheet names to the ListBox control so the user can

select which sheets to print:

C#

private void button1_Click(object sender, EventArgs e)

{

 try

 {

 swApp =

(SldWorks.SldWorks)Marshal.GetActiveObject("SldWorks.Application");

 }

 catch

 {

 MessageBox.Show("Error getting SolidWorks Handle");

 return;

 }

 swModel = (ModelDoc2)swApp.ActiveDoc;

 if (swModel == null)

 {

 MessageBox.Show("Failed to get active document");

 return;

 }

Working with Drawings

236

 if (swModel.GetType() != (int)swDocumentTypes_e.swDocDRAWING)

 {

 MessageBox.Show("Active document must be a drawing");

 return;

 }

 DrawingDoc swDrwDoc = (DrawingDoc)swModel;

 string[] sheetNames = (string[])swDrwDoc.GetSheetNames();

 listBox1.Items.Clear();

 listBox1.Items.AddRange(sheetNames);

}

I am hoping you understand all of this code by now, as every step

here has been done at some point more than once in previous

chapters.

So far when we start our program (feel free to at this point), the

ComboBox control will populate with all printer names installed on

the computer for the user to select, and upon clicking the “Get

Sheets” button the ListBox control will populate with all sheet

names of the currently active drawing allowing the user to select one

or more sheets which to print. So, all that is left for us to do now is to

print the selected sheets from the list to the selected printer from

the combo box.

Working with Drawings

237

Printing the selection
Start by adding a Click event function to the “Print!” button; we will

then check that the user has at least selected one sheet to print from

the list, and if they have, print them:

C#

private void button2_Click(object sender, EventArgs e)

{

 if (listBox1.SelectedItems.Count == 0)

 return;

 foreach (int position in listBox1.SelectedIndices)

 {

 int[] pages = new int[]{position + 1, position + 1};

 swModel.Extension.PrintOut2(pages, 1, false,

(string)comboBox1.SelectedItem, null);

 }

}

Not too much to do here. To get the user selection from the ListBox

control we access its property SelectedItems. We check how many

items have been selected, and if none have, exit.

Next, loop every item the user selected, but this time we use the

property SelectedIndices. The reason for this is because as shown

above using the PrintOut2 function requires page numbers, not

sheet names. The trick here is that the GetSheetNames function we

used to retrieve the sheet names in the first place retrieves them in

the page number order, so this works a treat. We add the 1 to the

Working with Drawings

238

position because the SelectedIndicies is a 0-based array, whereas

page numbers as 1-based arrays (starting at 1, not 0).

Remember that we said the first parameter of the PrintOut2

function is an array of pairs; since we want to print just this page; we

pass in the same page number twice to print just that page. We tell

the function to print 1 copy, not to collate, print to the printer the

user selected, and ignore the PrintToFile name.

That is all there is to it. Run your program, start by getting the sheet

names, then select one or more (using the Shift and/or Ctrl keys) and

then click the “Print!” button to print the sheets!

Now onto the VBA version; everything is exactly the same as the

.Net version except for small differences in acquiring the printer list

and the likes.

Working with Drawings

239

The Printing program in VBA
Start with the usual template. Insert a new form and in the main

function place the following code to show the form:

VBA

Sub main()

UserForm1.Show

End Sub

In the Form Designer add 2 Buttons, a ListBox control and a

ComboBox control. Position them so they look something like this:

We need to change

a few properties;

select the ListBox

control and change

the property

MultiSelect to

MultiExtended so

the user can select

more than one item

from the list.

Select the ComboBox control and change the property

DropListStyle to List; this prevents the user from altering the list,

which we don’t want them doing.

Working with Drawings

240

Getting a list of installed printers
Welcome to the world of complexity! Again, due to the lack of power

in VBA, getting a list of printers is somewhat more complicated than

the .Net version and requires invoking functions from the Windows

API libraries. Don’t worry about understanding this code as you will

only ever need to call the final function, not understand it. I will not

explain the function in great detail because there is no need to for

understanding SolidWorks API.

Either add a new Module to your project using Insert->Module, or

use the existing Module file. At the top of the file place the following

code. This in a way “imports” the functions we need from the

Windows API, for lack of a simpler explanation:

VBA

Const PRINTER_ENUM_CONNECTIONS = &H4

Const PRINTER_ENUM_LOCAL = &H2

Private Declare Function EnumPrinters Lib "winspool.drv" Alias

"EnumPrintersA" _

 (ByVal flags As Long, ByVal name As String, ByVal Level As Long,

_

 pPrinterEnum As Long, ByVal cdBuf As Long, pcbNeeded As Long,

_

 pcReturned As Long) As Long

Private Declare Function PtrToStr Lib "kernel32" Alias "lstrcpyA" _

 (ByVal RetVal As String, ByVal Ptr As Long) As Long

Private Declare Function StrLen Lib "kernel32" Alias "lstrlenA" _

Working with Drawings

241

 (ByVal Ptr As Long) As Long

Now we can call the functions EnumPrinters, PtrToStr and StrLen;

these are not part of VBA naturally, so that is why we had to declare

them.

The final task for this is to create a function that will use these calls

we declared to get a list of all printers installed on the computer and

return a simple array to the user. We do this like so:

VBA

Public Function ListPrinters() As Variant

Dim bSuccess As Boolean

Dim iBufferRequired As Long

Dim iBufferSize As Long

Dim iBuffer() As Long

Dim iEntries As Long

Dim iIndex As Long

Dim strPrinterName As String

Dim iDummy As Long

Dim iDriverBuffer() As Long

Dim StrPrinters() As String

iBufferSize = 3072

ReDim iBuffer((iBufferSize \ 4) - 1) As Long

'EnumPrinters will return a value False if the buffer is not big enough

Working with Drawings

242

bSuccess = EnumPrinters(PRINTER_ENUM_CONNECTIONS Or _

 PRINTER_ENUM_LOCAL, vbNullString, _

 1, iBuffer(0), iBufferSize, iBufferRequired, iEntries)

If Not bSuccess Then

 If iBufferRequired > iBufferSize Then

 iBufferSize = iBufferRequired

 Debug.Print "iBuffer too small. Trying again with "; _

 iBufferSize & " bytes."

 ReDim iBuffer(iBufferSize \ 4) As Long

 End If

 'Try again with new buffer

 bSuccess = EnumPrinters(PRINTER_ENUM_CONNECTIONS Or _

 PRINTER_ENUM_LOCAL, vbNullString, _

 1, iBuffer(0), iBufferSize, iBufferRequired, iEntries)

End If

If Not bSuccess Then

 'Enumprinters returned False

 MsgBox "Error enumerating printers."

 Exit Function

Else

 'Enumprinters returned True, use found printers to fill the array

 ReDim StrPrinters(iEntries - 1)

 For iIndex = 0 To iEntries - 1

 'Get the printername

 strPrinterName = Space$(StrLen(iBuffer(iIndex * 4 + 2)))

 iDummy = PtrToStr(strPrinterName, iBuffer(iIndex * 4 + 2))

 StrPrinters(iIndex) = strPrinterName

 Next iIndex

Working with Drawings

243

End If

ListPrinters = StrPrinters

End Function

In brief; this function calls the EnumPrinters function to get a list of

all printers on the system, and store them in an array StrPrinters,

which it then returns to the caller.

Now we want to populate our ComboBox control with a list of

printers when the form is first displayed; go to the coding view of the

user form, and from the Object Box at the top select the UserForm1

item from the list. Then from the Procedures Box select the

Activate to add a function for when the form activates.

Within this Activate function add the following code to call the

function we created just and fill the ComboBox with the printer list:

VBA

Private Sub UserForm_Activate()

Dim StrPrinters As Variant

Dim x As Long

StrPrinters = ListPrinters()

Working with Drawings

244

'Fist check whether the array is filled with anything, by calling another

function, IsBounded.

If IsBounded(StrPrinters) Then

 For x = LBound(StrPrinters) To UBound(StrPrinters)

 ComboBox1.AddItem StrPrinters(x)

 Next x

 ComboBox1.ListIndex = 0

Else

 MsgBox "Failed to get printer list"

End If

End Sub

All we do is create a new Variant variable to store our printer list and

call the ListPrinters function. We check that the list is actually a valid

array by calling a IsBounded, a function yet to be defined. If OK we

loop through all items and add them to the ComboBox control.

The IsBounded function checks if the variable passed in is actually an

array by checking that the upper bound of the variable is a numeric

value. If the variable is not an array it will not return a value:

VBA

Public Function IsBounded(vArray As Variant) As Boolean

 On Error Resume Next

 IsBounded = IsNumeric(UBound(vArray))

End Function

Working with Drawings

245

Getting sheet names
Now for the easy part, getting the sheet names; back in the Form

Designer, double-click your “Get Sheets” button to add a Click event

function. Within this function we are going to place the usual

connection and active document code, and then to get all the sheet

names of the active document using the GetSheetNames function

we have used before:

VBA

Set swApp = GetObject("", "SldWorks.Application")

If swApp Is Nothing Then

MsgBox "Error gettings SolidWorks Handle"

Exit Sub

End If

Set swModel = swApp.ActiveDoc

If swModel Is Nothing Then

MsgBox "Failed to get active document"

Exit Sub

End If

If swModel.GetType() <> swDocDRAWING Then

MsgBox "Active document must be a drawing"

Exit Sub

End If

Dim swDrwDoc As DrawingDoc

Set swDrwDoc = swModel

Working with Drawings

246

Dim sheetNames As Variant

sheetNames = swModel.GetSheetNames()

ListBox1.Clear

Dim sheetname As Variant

For Each sheetname In sheetNames

 ListBox1.AddItem (sheetname)

Next sheetname

End Sub

This should all be familiar enough for you to understand by now.

Now we are at the point where the user can get the sheet names and

select a printer, and all that is left to do is to print the selected

sheets.

Printing the selection
In order to print the selected sheets we follow much the same

process as the .Net example, with some slight differences.

Add a Click event function to the “Print!” button by double-clicking it

and then go to that function and add the following code to print the

selected sheets:

Working with Drawings

247

VBA

Private Sub CommandButton2_Click()

Dim i As Integer

For i = 0 To ListBox1.ListCount - 1

 If ListBox1.Selected(i) Then

 Dim pages(0) As Long

 pages(0) = i + 1

 swModel.Extension.PrintOut2 pages, 1, False, ComboBox1.Text, ""

 End If

Next

End Sub

We start with a For loop to loop all of the items within the list. Within

the loop we check whether that item is selected, and if it is we create

a new variable for the page numbers and call the PrintOut2 function.

The difference with the VBA call to the PrintOut2 function is that it

doesn’t 2 items in the page array when printing a single page, it takes

just one. Other than that everything else is the same. Give it a try!

Working with Drawings

248

249

Add-ins

The basics of an Add-in

Removing Add-in entries

Add-ins

250

I was stuck with the decision of the last chapter either covering file

importing and exporting with Excel, XML and ini files, or a quick

brush over of add-ins; my choice was the latter as I feel many of you

will find it harder to create an add-in on your own without a guide

than you will to work with files as there are plenty of tutorials for you

on file input/output. OK, so let’s get straight to it.

The basics of an Add-in
As I only intend to brush over add-ins, I will not explain every nitty-

gritty detail, but instead focus on the main sections of code you are

most likely to need to alter and play with.

Start with the template provided on the accompanying CD in the

Chapter 9 folder called MyFirstAddin.

When you open this solution file you will notice your project has

several items in the Solution Explorer:

The AssemblyInfo is just assembly information in every .Net project,

and the BitmapHandler is the code to generate our images for the

Add-ins

251

menus; we will not touch this coding in this example, only use its

functions.

The 2 image files are used for our menu icons, and are basically

16x16 icons (small) and 24x24 icons (large) lines up horizontally to

create a strip.

The only file remaining is the main add-in code file that we will be

using called MyFirstAddin; this contains all the important code I am

going to explain.

Open the

MyFirstAddin

file and you will

see something

similar to the

image to the left.

Try not to take

too much of the

code in as it will

likely just go

right over your

head and just

confuse the

matter, just

accept the fact

that it does what

it does for now,

which is to create a SolidWorks add-in with a few menu items. I will

cover as much of the important stuff as I can in this brief section.

Start by taking a glance at the Local Variables section:

Add-ins

252

C#

ISldWorks iSwApp;

ICommandManager iCmdMgr;

int addinID;

These three variables will be used later.

Take a look at the SolidWorks Registration section:

C#

[ComRegisterFunctionAttribute]

public static void RegisterFunction(Type t)

{

 Microsoft.Win32.RegistryKey hklm =

Microsoft.Win32.Registry.LocalMachine;

 Microsoft.Win32.RegistryKey hkcu =

Microsoft.Win32.Registry.CurrentUser;

 string keyname = "SOFTWARE\\SolidWorks\\Addins\\{" +

t.GUID.ToString() + "}";

 Microsoft.Win32.RegistryKey addinkey =

hklm.CreateSubKey(keyname);

 addinkey.SetValue(null, 0);

 addinkey.SetValue("Description", "Sample Addin ");

 addinkey.SetValue("Title", "MyFirstAddin");

 keyname = "Software\\SolidWorks\\AddInsStartup\\{" +

t.GUID.ToString() + "}";

 addinkey = hkcu.CreateSubKey(keyname);

Add-ins

253

 addinkey.SetValue(null, 0);

}

[ComUnregisterFunctionAttribute]

public static void UnregisterFunction(Type t)

{

 //Insert code here.

 Microsoft.Win32.RegistryKey hklm =

Microsoft.Win32.Registry.LocalMachine;

 Microsoft.Win32.RegistryKey hkcu =

Microsoft.Win32.Registry.CurrentUser;

 string keyname = "SOFTWARE\\SolidWorks\\Addins\\{" +

t.GUID.ToString() + "}";

 hklm.DeleteSubKey(keyname);

 keyname = "Software\\SolidWorks\\AddInsStartup\\{" +

t.GUID.ToString() + "}";

 hkcu.DeleteSubKey(keyname);

}

All that these two functions do is to add and delete a simple registry

entry containing details of your add-in, so that SolidWorks knows

where to look to load your file, that’s it. An entry looks like this:

Add-ins

254

Take a look at the ISwAddin Implementation section. This section

contains the functions that are called when SolidWorks attempts to

load your add-in, and unload it once done.

C#

public MyFirstAddin()

{

}

public bool ConnectToSW(object ThisSW, int cookie)

{

 iSwApp = (ISldWorks)ThisSW;

 addinID = cookie;

 //Setup callbacks

 iSwApp.SetAddinCallbackInfo(0, this, addinID);

Add-ins

255

 #region Setup the Command Manager

 iCmdMgr = iSwApp.GetCommandManager(cookie);

 AddCommandMgr();

 #endregion

 return true;

}

public bool DisconnectFromSW()

{

 RemoveCommandMgr();

 iSwApp = null;

 GC.Collect();

 return true;

}

The first function is the class constructor, we do nothing here. The

next function, ConnectToSW, is the function run when SolidWorks

loads your add-in. In this function is where we place our start up

coding.

In this example we initialise a new ICommandManager object by

calling the GetCommandManager function, which accepts the add-

in cookie variable as its parameter. With this Command Manager we

can now add a command item here by calling the function

AddCommandItem (defined later).

Add-ins

256

The DisconnectFromSW function is called when SolidWorks is

closing, so we gracefully remove any items we added to the

SolidWorks interface such as our command menu.

Finally, take a look at the UI Methods section. This is the section

where our code has been placed to add the command menu:

C#

public void AddCommandMgr()

{

 ICommandGroup cmdGroup;

 BitmapHandler iBmp = new BitmapHandler();

 Assembly thisAssembly;

 thisAssembly =

System.Reflection.Assembly.GetAssembly(this.GetType());

 cmdGroup = iCmdMgr.CreateCommandGroup(1, "MyFirstAddin",

"This is my add-in", "", -1);

 cmdGroup.LargeIconList =

iBmp.CreateFileFromResourceBitmap("MyFirstAddin.ToolbarLarge.bmp"

, thisAssembly);

 cmdGroup.SmallIconList =

iBmp.CreateFileFromResourceBitmap("MyFirstAddin.ToolbarSmall.bmp"

, thisAssembly);

 cmdGroup.LargeMainIcon =

iBmp.CreateFileFromResourceBitmap("MyFirstAddin.ToolbarLarge.bmp"

, thisAssembly);

Add-ins

257

 cmdGroup.SmallMainIcon =

iBmp.CreateFileFromResourceBitmap("MyFirstAddin.ToolbarSmall.bmp"

, thisAssembly);

 cmdGroup.AddCommandItem2("Start my external program", 0, "Click

me", "Click me", 0, "StartExternalProgram", "", 0,

(int)(SwConst.swCommandItemType_e.swMenuItem |

SwConst.swCommandItemType_e.swToolbarItem));

 cmdGroup.Activate();

}

public void RemoveCommandMgr()

{

 iCmdMgr.RemoveCommandGroup(1);

}

We start by declaring 3 variables; the iCommandGroup is the main

variable we are interested in, which is used to store a command

group we create. A Command Manager is like a menu or a toolbar

manager, only it is actually both. By creating a command manager

you can tell it to create a “group”, which acts as a menu and/or a

toolbar within SolidWorks.

The BitmapHandler is a handler to convert the images we have in

our Solution Explorer into workable icons for the menu and

toolbars.

The Assembly is what is called a “Reflection object”; we use it to get

a handle to a running .Net assembly. In this case we are getting a

Add-ins

258

handle to ourselves (the assembly itself), so that we can access the

images embedded within it (i.e. the images in our Solution

Explorer).

thisAssembly =

System.Reflection.Assembly.GetAssembly(this.GetType(

));

This line is used to get the handle to ourself by using the keyword

this.

The end goal here is to create a few menu items, but before we can

have a menu item, we need a menu to store them in. As we are using

a Command Manager we do not add a menu, but a group. This

group will act as a menu as well as a toolbar if you choose to have

one.

Adding a Command Group
The function we use to add this Command Group is called

CreateCommandGroup, of an ICommandManager object.

LpGroup = CommandManager.CreateCommandGroup (

UserID, Title, Tooltip, Hint, Position)

Like when we created a Property Manager Page control, the

UserID is just a unique number specified by the user. This number

only has to be unique for this add-in, not unique to all of the

SolidWorks add-ins, so it is up to the user to make sure each call

to CreateCommandGroup uses a different value.

Add-ins

259

The Title is the name that will appear on the menu or toolbar.

For example, the Title values for the standard SolidWorks

menus are File, View, Tools, Help.

The Tooltip is the little tip that pops up in a yellow box when the

user hovers over the item.

The Hint is the same thing as the Tooltip only this text appears

in the SolidWorks status bar at the bottom of SolidWorks when

the user hovers over the item.

The Position is the position that your menu will appear in the

main menu, stating at 0 for the beginning.

To create our example group we use the following code:

cmdGroup = iCmdMgr.CreateCommandGroup(1,

"MyFirstAddin", "This is my add-in", "", -1);

As you can see, the unique ID we assign to our group is just the

number 1. We call our group “MyFirstAddin”, and the tooltip as “This

is my add-in”, and nothing for the hint. We position it using -1 so it

gets positioned by default at the end of the menu items.

Before we continue to add command items we want to add some

icons ready for use with our items. To do this we use the

BitmapHandler object and set the 4 icon properties of the

ICommandManager object using the following lines:

Add-ins

260

C#

cmdGroup.LargeIconList =

iBmp.CreateFileFromResourceBitmap("MyFirstAddin.ToolbarLarge.bmp"

, thisAssembly);

cmdGroup.SmallIconList =

iBmp.CreateFileFromResourceBitmap("MyFirstAddin.ToolbarSmall.bmp"

, thisAssembly);

cmdGroup.LargeMainIcon =

iBmp.CreateFileFromResourceBitmap("MyFirstAddin.ToolbarLarge.bmp"

, thisAssembly);

cmdGroup.SmallMainIcon =

iBmp.CreateFileFromResourceBitmap("MyFirstAddin.ToolbarSmall.bmp"

, thisAssembly);

The first parameter that we pass in is the exact name of the

namespace that our code is within, plus the name of the image in the

Solution Explorer, separated by a period (.):

Add-ins

261

Adding a Command Item
Now we have a Command Group and some icons to use, we are

ready to add a Command Item. By adding this item it will

automatically add the menu item in the add-in. For this we call the

function AddCommandItem2:

*CmdIndex = CommandGroup.AddCommandItem2 (Name,

Position, HintString, ToolTip, ImageListIndex,

CallbackFunction, EnableMethod, UserID,

MenuTBOption)

The Name is the name that will appear in the menu or toolbar,

such as the menu item of the File group for opening a file is called

“Open...”.

The Position is again the position of item, this time in the group;

zero-based index.

The HintString is the hint that appears in the SolidWorks status

bar.

The ToolTip is the tip that appears in the yellow box when the

user hovers over the item.

The ImageListIndex is the position within the image list you

added in the previous step, starting from 0.

The CallbackFunction is the exact case-sensitive name of the

function within your add-in to actually run when the user clicks

this item. You will see this in use in a moment.

Add-ins

262

The EnableMethod is again the name of a function to call, but

this time this function is called before the item gets displayed. It

specified whether to enable or disable the item.

The UserID is the unique identifier if this item for this group. It

only has to be unique for this group and is not needed; to ignore

it pass 0.

The MenuTBOption is an enumerator value for selecting where

to add the item; to the menu, to the toolbar, or both.

The function returns the index position the menu item has been

placed in the group.

For this example here is our call to this function:

cmdGroup.AddCommandItem2("Start my external

program", 0, "Click me", "Click me", 0,

"StartExternalProgram", "", 0,

(int)(SwConst.swCommandItemType_e.swMenuItem |

SwConst.swCommandItemType_e.swToolbarItem));

We call the item “Start my external program”, and ignore any

specific positioning by passing in 0. We tell the item to run a function

called StartExternalProgram from our add-in code, which we will

create later, and we ignore the EnableMethod function by passing

an empty string. We set the ImageListIndex to 0 so it uses the first

icon from our lists that we loaded in previously. The two image strips

look like this, so the index 0 will use the left-most icon:

Add-ins

263

We ignore the UserID as well by passing in 0, and we tell the item to

appear in both the toolbar and menu controls.

Now with our menu item created all that is left is to activate the

group.

cmdGroup.Activate();

The final step is to create a function called StartExternalProgram

that we told our command item to call when the item is clicked.

Within this function you can place any code you like, including all of

the code we have covered in this book. A good test for you here

would be to place the .Net Property Manager Page code into the

add-in so you can handle event call-backs properly.

For this example however I will be creating the highly requested code

for running an external program or SolidWorks macro. The code is 2

short and sweet lines:

C#

public void StartExternalProgram()

{

 System.Diagnostics.Process.Start("notepad.exe");

 iSwApp.RunMacro(@"C:\mymacro.swp", "Macro1", "main");

}

The first line calls the function Start, from the

System.Diagnositcs.Process class; this function is the same as

writing something in the Start->Run... dialog box. The usual

procedure is to place the full address/location of the file/program you

Add-ins

264

wish to start. Because Notepad is within a system folder it is found

automatically without the need for its full location.

The second line runs a SolidWorks macro; the function is as follows:

retval = SldWorks.RunMacro (filePathName,

moduleName, procedureName)

The filePathName is the full location and filename of the macro

to run such as C:\My Stuff\My macro.swp”.

The moduleName is the name of the module code file that

contains the function you want to run. By default when creating

macros from SolidWorks this code file is called Macro1.

The prodecureName is the function name within the selected

module code file that you want to run. By default you would run

the main function.

In our example we use a macro that looks like the picture above, and

as you can we passed in “Macro1” as the module name, and “main”

as the function.

Add-ins

265

Now compile your program making sure that SolidWorks is shut

down and upon successfully building your project VS will inform you

that your project cannot be run directly. Do not worry, your project

has already run the SolidWorks Registration section code and

added itself to the windows registry ready for SolidWorks to find on

next load.

Open up SolidWorks and go to Tools->Add-ins. In there you should

notice your new add-in under the name you defined in the

RegisterFunction code:

public static void RegisterFunction(Type t)

{

...

 addinkey.SetValue("Description", "Sample Addin");

 addinkey.SetValue("Title", "MyFirstAddin");

...

}

Add-ins

266

As you can see the tooltip shows the add-in file location (which is our

project output folder location), the title and description we set.

Check the box to the left to load our add-in and click OK.

You will now notice that you have a new menu group and item,

named by the name that we gave it in our code, as well as a toolbar

that you can select to show as well:

To get the toolbar to display you have to right-click on any area of

the SolidWorks background with nothing open, or on the top or

bottom toolbars if you have files open to display the menu

Add-ins

267

containing all toolbars. In that menu you will see your new add-in.

Select it to show it:

Try clicking your button or menu

item and see how your function

StartExternalProgram will run,

and effectively open notepad

and run the macro located in the

location you entered.

That is it for our brief overview of add-ins; hopefully you have

learned enough to create some basic menu items, the rest of the

coding is not really to do with add-ins but doing what you actually

want your program to do.

One final note; every add-in you make must have a unique GUID

code at the top:

[Guid("07B6F2FD-74F6-4DEB-BBED-F7AAA0976FB1")]

public class MyFirstAddin : SWPublished.ISwAddin

In order to generate a new code run the project supplied on the CD in

Chapter 9, called GUIDCreator.

Add-ins

268

Removing Add-in entries
Once you have created an add-in if you wish to delete it all you have

to do is go to Start->Run... and type “regedit” without quotes and

press enter. This will open the Registry Editor. From there go to

HKEY_LOCAL_MACHINE\SOFTWARE\SolidWorks\Addins

Within this entry is all of the add-ins of SolidWorks, including your

own. Just look for your GUID id in the list, or click each and look at

the descriptions to the right. Once found, delete the entire folder.

